Appendix 5.2

Marine Traffic Noise Assessment Methodology and Source Term Measurement

Methodology

The following procedures will be adopted for marine traffic noise assessment. The noise generated by the vessels at stationary mode (e.g. idling) will be assessed as fixed noise sources.

General 1

The navigation routes located within 300m of this development area considered as the assessment area. Any representative planned sources located within the assessment area would be considered in this noise assessment, adopting the noise criteria as discussed in **Appendix 5.1**.

Operational Information of Marine Vessels

All operational information of vessels is based on either site observation or operation schedule from operators for typical days. The operational information for the existing ferry, kaito, and existing marina are summarized in the table below.

Table A5.2: Operational information for the existing ferry and marina vessels

Operation Parameters	Existing Discovery Bay Ferry	Kaito	Marina	Tug boat with barge	Sand barge	LPG container
Ferry / yacht per hour	9[1]	6[1]	3[2]	1 [4]	1 [4]	1[4]
Speed knots/h	~10	~10	5[3]	~2	~4	~4

Notes:

- [1] According to operation schedule from operator.
- [2] Based on site observation from typical days and weekends in Discovery Bay.
- [3] According to Marine Department Notice No. 84, only speed at 5 knots per hour for yachts is allowed inside typhoon shelter. In addition, as advised by the marine traffic engineer, the speed for the marine route as indicated in Appendix 5.1 is in 5 knots per hour.
- [4] According to operation schedule from operator, the tug boat with barge from gas supplier, sand barge and LPG container vessels would arrive the pier once per month, once per month and once per week.

Apart from existing Discovery Bay ferry, Kaito and existing marina, tugboat with barge from LPG supplier, sand barge with sand loading, LPG containers for glass bottle, bounty, oil tanker and ferries/vessels petrol filling near kaito pier are also observed.

According to latest information, the ferry petrol filling will be conducted in marine based filling station outside Discovery Bay. Therefore, the operation of oil tanker and ferries / yessels petrol filling near kaito pier would be excluded in the noise assessment.

Marine Noise Source Determination

In order to determine the Sound Exposure Level (SEL) in accordance with ISO 2922-1975(E), which has been adopted in several approved EIA, such as AEIAR-178/2013, noise measurements for marine noise source terms have been conducted as below:

- Noise measurements for marine noise source terms at Discovery Bay Marina, and Discovery Bay Public Pier and Kaito Pier for the existing ferry, kaito, marina, tugboat with barge from LPG supplier, etc.
- The measurement location at Discovery Bay Marina was about 20m from the vessels.
- For the measurements at Discovery Bay Public Pier, the separation distance was about 50 100m, depending on the transit route.
- For the measurements at Kai To Pier, the separation distance was about 20 100m, depending on the transit route.

The table below summarizes the marine noise source term.

Table A5.3: Marine noise source term measurement

Description [1]	Direction	SEL at 25m, dB(A) ^[2]
Peng Chau Kaito (Including those via	Approaching	71.3
Trappist Monastery)	Departing	74.5
Mui Wa Vaita	Approaching	77.7
Mui Wo Kaito	Departing	78.6
Discours Pay Forms	Approaching	85.6
Discovery Bay Ferry	Departing	86.1
T.,	Approaching	80.0
Tugboat	Departing	80.0
Continue	Approaching	77.7 [3]
Sand Barge	Departing	77.7
I.D.C. Charteline	Approaching	71.2
LPG Containers	Departing	71.2 [4]

Notes:

- [1] Only non-disturbed events have been tabulated in the above table.
- [2] SEL corrected to 25m at reference speed of about 5knots/h for proposed yacht and 16knots/h for existing ferry.
- [3] SEL measurement was disturbed by other noisy activities, such as bus idling and oil tanker operation. Since non-disturbed events could not be measured, SEL for "Departing" has been adopted to represent that for "Approaching".
- [4] SEL measurement was disturbed by other noisy activities, such as bus idling and oil tanker operation. Since non-disturbed events could not be measured, SEL for "Approaching" has been adopted to represent that for "Departing".

Prediction of Noise Impacts

The SELs summarized in the above tables are then converted to establish the facade noise levels at NSRs, taking into account various consideration such as operation time, distances, number of concurrent vessels, facade effects. A summary of equations adopted in the marine traffic noise assessment is given in the table below.

Table A5.4: Summary of equations for marine traffic noise assessment

Parameters	Equations						
	$SEL = L_{max} + 10\log(kd/V),$						
	where						
SEL, dB(A)	L _{max} = Measured marine traffic passby noise level, dB(A)						
SEL, UD(A)	k = Empirical constant						
	d = Perpendicular distance between measurement location and the marine traffic, m						
	V = Speed of the marine traffic, m/s						
	$L_{eq\ 1hr} = SEL - 10log(d_1/d) - 10log(T) + 10log(N) + FC + Dir$						
	where						
	d ₁ = Perpendicular slant distance between marine traffic and NSR,						
$L_{eq\ lhr}, dB(A)$	m						
	T = Time period under consideration (3600), s						
	N = Number of marine traffic						
	FC = With 3 dB(A) facade correction						
	Dir = -10dB(A) correction for without line of sight						

Since all the noise sources from the marine vessels movements would not occur at the same time, it is important to analyse and establish the possible cases during a typical 1-hour period that would constitute noise impacts. The details of different scenarios have been presented in below table and **Appendix 5.3**.

Table A5.5: Summary of all observed possible cases in a standard sample period (60mins)

	Description [1]									
Case	PC.	MW	DB	Yacht	TB	SB	LPG			
1	7	√[2]	V	V	√[2]					
2	1	√[2]	1	√		√[2]				
3	7	√[2]	√	V			√(2)			

Note:

[1] PC - Peng Chau kaito;

MW - Mui Wo kaito;

DB - Discovery Bay Ferry;

TB - Tugboat with barge from LPG supplier;

SB – Sand Barge; and

LPG - LPG Container.

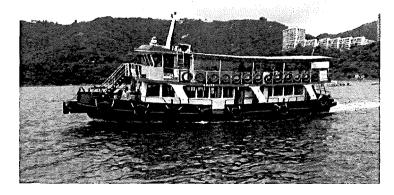
[2] Marine vessels operate in daytime only.

It can be seen that the marine vessel movements for Peng Chau kaito, Mui Wo kaito and Yacht would also occur during a typical hour. The operation of sand barge, tugboat and LPG container vessels would be carried out once a season (~3 months), once per month and once per week during daytime period respectively.

As confirmed with the facility operator, the Bounty services currently available at Area 10b will not be re-provisioned in the future construction and operational phase of the Project. Hence, berthing area for the Bounty would no longer be necessary. Therefore, bounty is not included in this noise assessment.

However, site constraints would eliminate more than one activity for vessels for the gas bottle supplier, sand barge and bounty, and tugboat with barge to occur concurrently. Besides, all these activities would not occur during night-time period as well.

235928


Project Title: Optimization of Land Use in Discovery Bay
Title: Determination of Ferry Noise Sources (Peng Chau Line)

Event	Description	Direction	Measured L _{max} , dB(A) ^[1]	Approx. Distance from ferry, m [2]	Speed, Knots/hr	Speed	Estimated SEL, dB(A) ^[3]	Non-Disturbed	SEL for non - disturbed events, dB(A)	SEL at 25m, dB(A)
PC1	Peng Chau Kaito	Approaching to Kaito Pier	63.4	20	9	5	72.8	N	-	
PC3	Peng Chau Kaito	Approaching to Kaito Pier	61.9	20	7	4_	72.3	N		-
PC5	Peng Chau Kaito	Approaching to Kaito Pier	61.1	20	10	5	69.8	Υ	69.8	68.9
PC7	Peng Chau Kaito	Approaching to Kaito Pier	58.9	20	7	4	69.1	Υ	69.1	68.2
PC9	Peng Chau Kaito	Approaching to Kaito Pier	60.8	20	11	6	69.2	Y	69.2	68.2
PC11	Peng Chau Kaito	Approaching to Kaito Pier	59.9	20	7	3	70.6	Υ	70.6	69.6
PC13	Peng Chau Kaito	Approaching to Kaito Pier	62.3	20	8	4	72.2	Υ	72.2	71.3
									Minimum Maximum Average	68.2 71.3 69.2
PC2	Peng Chau Kaito	Departure from Kaito Pier	62.1	20	10	_ 5	71.0	Υ	71.0	70.1
PC4	Peng Chau Kaito	Departure from Kaito Pier	61.7	20	9	5	71.1	Υ	71.1	70.1
PC6	Peng Chau Kaito	Departure from Kaito Pier	61.6	20	8	4	71.8	Υ	71.8	70.8
PC8	Peng Chau Kaito	Departure from Kaito Pier	62.3	20	14	7	69.8	Υ	69.8	68.8
PC10	Peng Chau Kaito	Departure from Kaito Pier	63.3	20	5	3	75.1	N	-	•
PC12	Peng Chau Kaito	Departure from Kaito Pier	68.7	20	10	5	77.8	N	-	-
PC14	Peng Chau Kaito	Departure from Kaito Pier	60.8	20	5	2	73.1	Υ	73.1	72.1
PC15	Peng Chau Kaito	Departure from Kaito Pier	64.9	20	7	4	75.4	Y	75.4	74.5
									Minimum	68.8
									Maximum	74.5
									Average	71.3

[1] All measurement were taken at free field condition.

[2] Perpendicular distance between the reference measurement location and the source.
 [3] SEL = L_{max} + 10log(kd/V) according to Equation 2.22 of Transportation Noise Reference Book, 1987.

where k = 2 (empirical constant, d = perpendicular distance, v = speed in m/s

235928

Project Title:

Title:

Optimization of Land Use in Discovery Bay Determination of Ferry Noise Sources (Mui Wo Line)


Event	Description	Direction	Measured L _{max} , dB(A) ^[1]	Approx. Distance from ferry, m	Speed, Knots/hr	Speed (V), m/s	. (54)	Non-Disturbed Events(Y/N)	SEL for non - disturbed events, dB(A)	SEL at 25m, dB(A)
MW1	Mui Wo Kaito	Approaching to Kaito Pier	60.7	20	10	5	69.7	Υ	69.7	68.8
MW3	Mui Wo Kaito	Approaching to Kaito Pier	61.1	20	7	3	71.8	Y	71.8	70.9
MW5	Mui Wo Kaito	Approaching to Kaito Pier	66.3	20	5	2	78.6	Y	78.6	77.7
MW7	Mui Wo Kaito	Approaching to Kaito Pier	64.7	20	5	2	76.8	Y	76.8	75.9
MW9	Mui Wo Kaito	Approaching to Kaito Pier	62.9	20	5	3	74.9	Y	74.9	73.9
MW11	Mui Wo Kaito	Approaching to Kaito Pier	69.9	20	5	2	82.0	N	-	-
									Minimum	68.8
		·							Maximum	77.7
								i	Average	73.4
MW2	Mui Wo Kaito	Departure from Kaito Pier	68.3	20	6	3	79.2	Y	79.2	78.3
MW4	Mui Wo Kaito	Departure from Kaito Pier	66.7	20	4	2	79.6	Y	79.6	78.6
MW6	Mui Wo Kaito	Departure from Kaito Pier	64.4	20	8	4	74.4	Y	74.4	73.4
MW8	Mui Wo Kaito	Departure from Kaito Pier	68.2	20	6	3	79.4	Υ	79.4	78.5
MW10	Mui Wo Kaito	Departure from Kaito Pier	61.2	20	4	2	74.0	Y	74.0	73.0
MW12	Mui Wo Kaito	Departure from Kaito Pier	63.1	20	6	3	74.3	Υ	74.3	73.4
			•						Minimum	73.0
		9						Ţ	Maximum	78.6
		***							Average	75.9

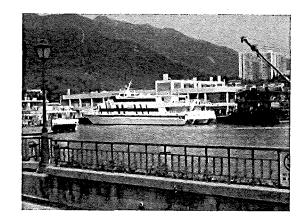
Note:

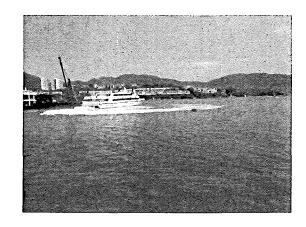
[1] All measurement were taken at free field condition.

[2] Perpendicular distance between the reference measurement location and the source.

[3] SEL = L_{max} + 10log(kd/V) according to Equation 2.22 of Transportation Noise Reference Book, 1987.
 where k = 2 (empirical constant, d = perpendicular distance, v = speed in m/s

Project Title: Optimization of Land Use in Discovery Bay
Title: Determination of Ferry Noise Sources (Discovery Bay to Central Line)


Event	Description	Direction	Measured L _{max} , dB(A) ^[1]	Approx. Distance from ferry, m	Speed, Knots/hr	Speed (V), m/s	Estimated SEL, dB(A) ^[3]	Non-Disturbed Events(Y/N)	SEL for non - disturbed events, dB(A)	SEL at 25m, dB(A)
DB1	Discoery Bay No. 9	Approaching to DB Public Pier	64.5	50	10	5	77.5	Y	77.5	80.5
DB2	Discoery Bay No. 8	Approaching to DB Public Pier	64.2	50	6	3	79.0	Υ	79.0	82.0
DB6	Discoery Bay No. 9	Approaching to DB Public Pier	69.7	50	10	5	82.6	Υ	82.6	85.6
DB8	Discoery Bay No. 8	Approaching to DB Public Pier	67.1	50	11	5	79.7	Υ	79.7	82.7
DB12	Discoery Bay No. 8	Approaching to DB Public Pier	64.7	50	4	2	81.1	Υ	81.1	84.1
DB14	Discoery Bay No. 5	Approaching to DB Public Pier	64.8	50	6	3	80.1	N	-	-
DB16	Discoery Bay No. 7	Approaching to DB Public Pier	63.3	50	9	5	76.7	Y	76.7	79.7
DB18	Discoery Bay No. 5	Approaching to DB Public Pier	67.9	50	9	5	81.3	Y	81.3	84.3
DB4	Discoery Bay No. 1	Approaching to DB Public Pier	62.0	50	6	3	77.3	Υ	77.3	80.3
DB10	Discoery Bay No. 1	Approaching to DB Public Pier	62.4	50	9	4	76.0	Υ	76.0	79.0
									Minimum Maximum Average	79.0 85.6 82.0
DB3	Discoery Bay No. 8	Departure from DB Public Pier	68.1	50	9	5	81.5	Υ	81.5	84.5
DB5	Discoery Bay No. 1	Departure from DB Public Pier	71.3	50	4	2	87.9	N		-
DB7	Discoery Bay No. 9	Departure from DB Public Pier	73.7	50	12	6	85.9	N	-	_
DB9	Discoery Bay No. 8	Departure from DB Public Pier	72.6	50	8	4	86.6	N	_	-
DB11	Discoery Bay No. 1	Departure from DB Public Pier	72.2	50	11	5	84.9	N	-	_
DB13	Discoery Bay No. 8	Departure from DB Public Pier	64.8	50	8	4	78.5	Y	78.5	81.5
DB15	Discoery Bay No. 5	Departure from DB Public Pier	64.6	50	8	4	78.4	Υ	78.4	81.4
DB17	Discoery Bay No. 7	Departure from DB Public Pier	69.7	50	9	5	83.1	Υ	83.1	86.1
DB19	Discoery Bay No. 5	Departure from DB Public Pier	67.8	50	9	4	81.3	Υ	81.3	84.3
									Minimum	81.4
	•								Maximum	86.1
									Average	83.6


Note:

[1] All measurement were taken at free field condition.

[2] Perpendicular distance between the reference measurement location and the source.

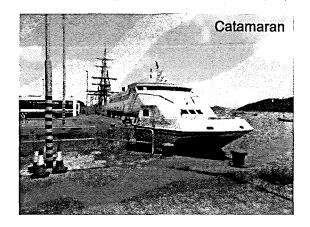
[3] SEL = L_{max} + 10log(kd/V) according to Equation 2.22 of Transportation Noise Reference Book, 1987. where k = 2 (empirical constant, d = perpendicular distance, <math>v = speed in m/s

235928

Project Title:

Title:

Optimization of Land Use in Discovery Bay Determination of Ferry Noise Sources (Ferry Petrol Filling)


Event	Description	Direction	Measured L _{max} , dB(A) ^[1]	Approx. Distance from ferry, m	Speed, Knots/hr	Speed		Non-Disturbed Events(Y/N)	SEL for non - disturbed events, dB(A)	SEL at 25m, dB(A)
DB(fuel)1	Monohull petrol filling	Approaching to Oil Tank at Marina Avenue	69.2	20	4	2	82.3	Υ	82.3	81 <i>.</i> 3
DB(fuel)3	Catamaran petrol filling	Approaching to Oil Tank at Marina Avenue	66.1	20	3	2	79.9	Υ	79.9	78.9
			<u>-</u>		-		•	-	Minimum	78.9
									Maximum	81.3
									Average	80.1
DB(fuel)2	Monohull petrol filling	Departure from Oil Tank at Marina Avenue	69.4	20	3	2	83.1	Y	83.1	82.1
DB(fuel)4	Catamaran petrol filling	Departure from Oil Tank at Marina Avenue	63.4	20	3	1	78.1	Υ	78.1	77.1
							··· ·		Minimum	77.1
									Maximum	82.1
									Average	79.6

Note:

[1] All measurement were taken at free field condition.

[2] Perpendicular distance between the reference measurement location and the source.

[3] SEL = L_{max} + 10log(kd/V) according to Equation 2.22 of Transportation Noise Reference Book, 1987. where k = 2 (empirical constant, d = perpendicular distance, v = speed in m/s

235928

Project Title:

Title:

Optimization of Land Use in Discovery Bay Determination of Ferry Noise Sources (Oil Tanker)

Event	Description	Direction	Measured L _{max} , dB(A) ^[1]	Approx. Distance from ferry, m	Speed, Knots/hr	Speed	I SEL.	Non-Disturbed Events(Y/N)	SEL for non - disturbed events, dB(A)	SEL at 25m, dB(A)
PS1	Oil Tanker	Approaching to Oil Tank at Marina Avenue	68.9	15	13	7	75.4	Y	75.4	73.2
PS2	Oil Tanker	Departure from Oil Tank at Marina Avenue	71.7	15	5	3	82.4	Υ	82.4	80.2
									Minimum	73.2
									Maximum	80.2
		•							Average	76.7

Note:

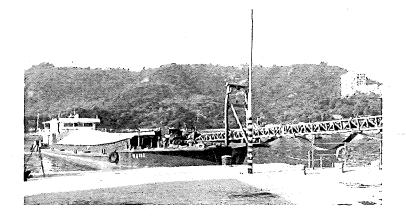
- [1] All measurement were taken at free field condition.
- [2] Perpendicular distance between the reference measurement location and the source.
- [3] SEL = L_{max} + 10log(kd/V) according to Equation 2.22 of Transportation Noise Reference Book, 1987. where k = 2 (empirical constant, d = perpendicular distance, v = speed in m/s

235928

Project Title:

Optimization of Land Use in Discovery Bay

Title:


Determination of Ferry Noise Sources (Sand Barge)

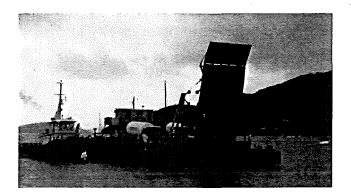
Event	Description	Direction	Measured L _{max} , dB(A) ^[1]	Approx. Distance from ferry, m	Speed, Knots/hr	Speed	Estimated SEL, dB(A) ^[3]	Non-Disturbed Events(Y/N)	SEL for non - disturbed events, dB(A)	SEL at 25m, dB(A)
SB1	Sand Barge	Approaching to Sand Barge	68.0	15	4	2	79.3	N	•	#
SB2	Sand Barge	Departure from Sand Barge	67.4	15	3	2	80.0	Y	80.0	77.7
		•		•••					Minimum	77.7
									Maximum	77.7
									Average	77.7

Note:

[1] All measurement were taken at free field condition.

[2] Perpendicular distance between the reference measurement location and the source.
 [3] SEL = L_{max} + 10log(kd/V) according to Equation 2.22 of Transportation Noise Reference Book, 1987.

235928


Optimization of Land Use in Discovery Bay
Determination of Ferry Noise Sources (Tug Boat with Barge) Project Title:

Event	Description	Direction	Paccun	Travelling Distance, m	E. M. C. T. Mark St. 1984 (1984)	Approx. Distance from ferry, m	Estimated Speed (km/hr)	Speed, Knots/hr	Speed (V), m/s	Estimated SEL, dB(A) ^[3]	Non-Disturbed Events(Y/N)	SEL for non - disturbed events, dB(A)	SEL at 25m, dB(A)
TB1	Tug Boat with Barge	Approaching to Kaito Pier	204	250	. 68.3	15	4	2	1.2	82.2	Y	82.2	80.0
TB2	Tug Boat with Barge	Departure from Kaito Pier	204	250	67.3	15	4	2	1.2	81.2	Y	81.2	79.0
							·					Minimum	79.0
`												Maximum	80.0
1												Average	79.5

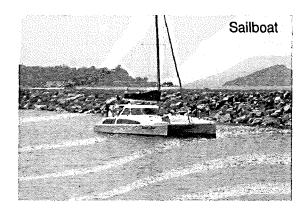
[1] All measurement were taken at free field condition.

[2] Perpendicular distance between the reference measurement location and the source.

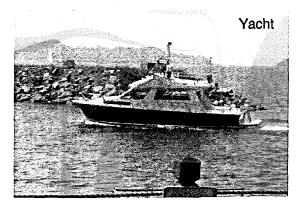
[3] SEL = L_{max} + 10log(kd/V) according to Equation 2.22 of Transportation Noise Reference Book, 1987. where k = 2 (empirical constant, d = perpendicular distance, v = speed in m/s

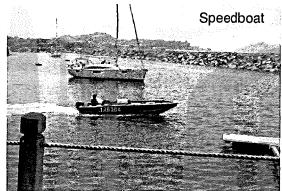
235928

Project Title: Optimization of Land Use in Discovery Bay
Title: Determination of Marina Noise Sources


Approx. SEL for non -Measured **Distance Estimated** Non-Disturbed Speed, Speed SEL at 25m. SEL, dB(A) L_{max}, dB(A) disturbed Event Description from Direction Knots/hr (V), m/s Events(Y/N) dB(A) [3] events, dB(A) [5] [1] yacht, m Yacht - 1 Sailboat 1 [6] 4 68.2 Out from Marina 57.6 20 Yacht - 2 Speed boat 1 5 66.4 In to Marina 20 9 66.4 64.5 57.1 Yacht - 3 Speed boat 2 Out from Marina 63.6 20 13 7 71.4 Υ 71.4 69.5 Yacht - 4 Sailboat 2 [6] Out from Marina 8 4 72.3 Ν 62.3 20 70.3 Yacht - 5 Speed boat 3 70.3 Υ 68.4 In to Marina 60.6 20 8 4 Yacht -6 Waste collection boat 1 8 4 68.6 Y 68.6 66.7 Out from Marina 58.9 20 Yacht -7 4 Υ 64.9 62.9 Speed boat 4 Out from Marina 55.2 20 8 64.9 Υ 73.8 Yacht -8 Speed boat 5 In to Marina 63.7 20 8 4 73.8 71.8 71.5 Yacht -9 71.5 Yacht 1 In to Marina 61.7 20 8 4 69.6 Υ Yacht -10 Sailboat 3 [6] 11 6 63.4 Out from Marina 55.0 20 --Y 74.0 72.1 Yacht -11 Speed boat 6 Out from Marina 65.8 20 12 6 74.0 Υ Yacht -12 Sailboat 4 [6] Out from Marina 55.8 20 7 3 66.6 Yacht -13 Waste collection boat 2 Υ 73.2 71.2 In to Marina 63.5 20 8 4 73.2 Sailboat 5 [4] Ν Yacht - 14 Out from Marina 67.9 20 8 4 77.7 Υ Yacht - 15 Sailboat 6 [6] Out from Marina 67.2 57.1 20 8 4 Yacht -16 Sailboat 7 Out from Marina 62.0 10 5 71.0 Y 71.0 69.1 20 Ν Yacht -17 Speed boat 7 [4] In to Marina 61.2 20 11 6 69.6 -Υ Yacht -18 Sailboat 8 [6] Out from Marina 61.2 20 6 3 72.2 Sailboat 9 [4,6] Ν Yacht -19 Out from Marina 61.2 20 4 71.5 -Yacht -20 Speed boat 8 [4] Out from Marina 61.2 20 6 69.6 Ν 11 Sailboat 10 [4,6] Out from Marina 56.3 7 Ν Yacht -21 20 4 66.6 Υ Yacht -22 Out from Marina 58.0 5 Sailboat 11 ^[6] 20 10 67.0 -_ Out from Marina 9 Υ 68.1 66.2 Yacht -23 Speed boat 9 61.6 20 17 68.1 Yacht -24 Sailboat 12 [6] Out from Marina 57.9 6 20 11 66.4 -Sailboat 13 [6] Out from Marina 56.4 Υ Yacht -25 20 11 6 64.9 Yacht -26 Speed boat 10 In to Marina 58.5 20 10 5 67.4 67.4 65.5 Out from Marina Ν Yacht -27 Speed boat 11 [4] 60.3 20 10 5 69.1 Out from Marina 71.6 62.8 20 5 Υ 69.6 Yacht -28 Speed boat 12 10 71.6 In to Marina 59.5 Υ 70.0 68.0 Yacht -29 Speed boat 13 20 7 4 70.0 In to Marina 56.7 Υ 65.7 Yacht -30 Speed boat 14 20 10 5 65.7 63.8 In to Marina 57.0 Y 66.7 64.8 Yacht -31 Waste collection boat 3 20 8 4 66.7 Out from Marina 60.8 69.8 67.9 Yacht -32 Speed boat 15 20 10 5 69.8 In to Marina 64.5 Yacht -33 Speed boat 16 20 Ν 7 4 74.8 _ In to Marina 56.8 Y 66.6 64.7 Yacht -34 Waste collection boat 4 20 8 4 66.6 Out from Marina 61.2 20 Ν _ Yacht -35 Sailboat 14 [6] 3 2 75.2 Min. 62.9 Maximum 72.1 67.6 Average

Note:


[1] All measurement were taken at free field condition.


[2] Perpendicular distance between the reference measurement location and the source.

- [3] $SEL = L_{max} + 10log(kd/V)$ according to Equation 2.22 of Transportation Noise Reference Book, 1987. where k = 2 (empirical constant, d = perpendicular distance, v = speed in m/s
- [4] Affected by noise from other marine traffic.
- [5] Marine Department Notice No. 84 of year 2000 regarding speed limit in typhoon shelters, all vessels underway in the entrance to or within a typhoon shelter should not exceed five knots. However, yachts with speed more than 5knots per hour are still considered in the source term calculation for conservative approach.
- [6] Noise events from sailboat were observed compatible to background noise level, therefore, the noise from sailboat is insignificant and concluded as no impact.

235928

Project Title: Optimization of Land Use in Discovery Bay

Title: Determination of Ferry Noise Sources (LPG container vessel)

Event	Description	Direction	Measured L _{max} , dB(A) ^[1]	Approx. Distance from ferry, m [2]	Speed, Knots/hr	Speed		Non-Disturbed Events(Y/N)	SEL for non - disturbed events, dB(A)	SEL at 25m, dB(A)
LPG1	LPG container vessel	Approaching to LPG container vessel	62.1	15	4	2	73.4	Y	73.4	71.2
LPG2	LPG container vessel	Departure from LPG container vessel	56.7	15	3	2	69.3	N	-	-
									Minimum	71.2
			•						Maximum	71.2
									Average	71.2

Note:

[1] All measurement were taken at free field condition.

[2] Perpendicular distance between the reference measurement location and the source.
 [3] SEL = L_{max} + 10log(kd/V) according to Equation 2.22 of Transportation Noise Reference Book, 1987.

Appendix 5.3

Predicted SPL due to Marine Traffic

235928

Project Title: Optimization of Land Use in Discovery Bay

Tille:

Marine Traffic Noise Assessment

Assessment Point: N10b-A1

Case 1: Peng Chau Kaito, Mui Wo Kaito, Discovery Bay Ferry & Tugboat with barge in 60mins

									Correct	on, dB(A)			Predicted Noise Level, Leq (60min)	Overall Noise Level, Leq (60min) dB(A)	Prevailing Noise Level, Leq (60m/o)	Remark
Line	Period	Headway	SEL @ 25m, dB(A)[7]	Time, s ^[3]	No. of Ferry ^[4]	Distance, m	Time	No.	Facade	Barrier	Directivity	Distance	dB(A)		dB(A) ⁽⁶⁾	
		Approaching	71.3	3600	2	50	36	3	3	0	0	-3	39			
PC		Departure	74.5	3600	2	50	36	3	3	0	0	-3	42]		· · · · · · · · · · · · · · · · · · ·
		Approaching	77.7	3600	1	50	36	0	3	0	0	-3	42			•
MW	Daytime /	Departure	78.6	3600	1	_50	36	0	3	0	0	-3	43]		•
	Evening	Approaching	85.6	3600	5	750	36	7	3	-10	0	-15	35	51	51	•
DB	time	Departure	86.1	3600	4	750	36	6	3	-10	- 0	-15	35			-
Yacht		Approaching & Departure	72.1	3600	3	135	36	5	3	0	0	-7	37]		
		Approaching	80.0	3600	1	30	36	0	3	0	0	-1	47]		For worst case 60min scenario, activity with higher SEL
ТВ		Departure	79.0	3600	-	30	-		3	0	0	-	-]		would be used for assessment
		Approaching	71,3	3600	_ 1	50	36	0	3	0	0	-3	36			-
PC]	Departure	74.5	3600	1	50	36	0	3	0	0	-3	39]		-
		Approaching	77.7	3600	-	50			3	0	0					No operation during nighttime
MW] [Departure	78.6	3600	-	50			3	0	0		-]		No operation during nighttime
	Nighttime	Approaching	85.6	3600	3	750	36	5	_ 3	-10	0	-15	33	42	46	-
DB] [Departure	86.1	3600	3	750	36	5	3	-10	0	-15	34			-
Yacht		Approaching & Departure	72.1	3600		135	-	-	3	0	0_	_	-]		No operation during nighttime
		Approaching	80,0	3600		30			_3	0	0	-	-			No operation during nighttime
тв		Departure	79.0	3600		30			3	0	0	-		7		No operation during nighttime

Note

[1] PC - Peng Chau Kai To; MW - Mui Wo Kai To; DB - Discovery Bay Ferry; TB - Tugboat + barge; DB fuel - Discovery Bay Ferry for petrol filling; OT - Oil Tanker

[2] Estimated SEL at reference distance of 25m.

[3] Time = 3600s for 1 hour period.

[4] No. of Yacht in 1 hour (Both approaching & departure)

[5] Measured background noise level (BNL) at free field condition , facade correction (+3 dB(A)) has been added.

Case 2: Peng Chau Kaito, Mul Wo Kaito, Discovery Bay Ferry & Sand Barge in 60mins

	-		, , , ,													
									Correcti	on, dB(A)			Predicted Noise Level, Leq (60min)	Overali Noise Level, Leg (somin) dB(A)	Prevailing Noise Level, Leq (somin)	Remark
Line	Period	Headway	SEL @ 25m, dB(A)[2]	Time, s ^[3]	No. of Ferry ^[4]	Distance, m	Time	No.	Facade	Barrier	Directivity	Distance -	dB(A)		dB(A) ^[5]	
		Approaching	71.3	3600	2	50	36	3	3	0	0	-3	39			- ,
PC		Departure	74.5	3600	2	50	36	3	3	0	0	-3	42	}		
		Approaching	77.7	3600	1	50	36	0	3	0	0	-3	42]		-
MW	Daytime /	Departure	78.6	3600	1	50	36	0	3	0	0	-3	43]		
	Evening	Approaching	85.6	3600	5	750	36	7	3	-10	0	-15	35	50	51	
DB	time	Departure	86.1	3600	4	750	36	6	3	-10	0	-15	35			-
Yacht		Approaching & Departure	72.1	3600	3	135	36	5	3	0	0	-7	37			-
		Approaching	77.7	3600	1	30	36	0	3	0	0	-1	44]		For worst case 60min scenario, activity with higher SE
SB		Departure	77.7	3600		30			3	0	0			l		would be used for assessment
		Approaching	71.3	3600	1	50	36	0	3	0	0	-3	36			-
PC		Departure	74.5	3600	1	50	36	0	3	0	0	-3	39			
		Approaching	77.7	3600		50	-		3	0	0]		No operation during nighttime
MW		Departure	78.6	3600	-	50		-	3	0	0	-]		No operation during nighttime
	Nighttime	Approaching	85.6	3600	3	750	36	5	3	-10	0	-15	33	42	46	
DB	Ąţ	Departure	86.1	3600	3	750	36	5	3	-10	0	-15	34] [·
Yacht		Approaching & Departure	72.1	3600		135	-		3	0	0	-		_		No operation during nighttime
		Approaching	77.7	3600		30		-	3	0	0			_		No operation during nighttime
SB		Departure	77.7	3600	. 1	30			3	0	0	-		1		No operation during nighttime

Note:

[1] PC - Peng Chau Kai To; MW - Mul Wo Kai To; DB - Discovery Bay Ferry; TB - Tugboat + barge; DB fuel - Discovery Bay Ferry for petrol filling; SB - Sand Barge

[2] Estimated SEL at reference distance of 25m.

[3] Time = 3600s for 1 hour period.

[4] No. of Yacht in 1 hour (Both approaching & departure)

[5] Measured background noise level (BNL) at free field condition , facade correction (+3 dB(A)) has been added.

(C)

ject No.:

ject Title:

Optimization of Land Use in Discovery Bay

Marine Traffic Noise Assessment

sessment Point: N10b-A1

3e 3: Peng Chau Kaito, Mul Wo Kaito, Discovery Bay Ferry & LPG container vessel in 60mins

				,		·			Correction	on, dB(A)			Predicted Noise Level, Leq (comin)	Overall Noise Level, Leq (60min) dB(A)	Prevailing Noise Level, Leq (comin)	Remark
Line	Period	Headway	SEL @ 25m, dB(A) ^[2]	Time, s ^[3]	No. of Ferry ^[4]	Distance, m	Time	No.	Facade	Barrier	Directivity	Distance	dB(A)		dB(A) ^[5]	
		Approaching	71.3	3600	2	50	36	3	3	0	0	-3	39			-
PC		Departure	74.5	3600	2	50	36	3	3	0	0	-3	42			•
		Approaching	77.7	3600	1	50	36	0	3	0	0	-3	42		•	-
MW	Daytime /	Departure	78.6	3600	1	50	36	0	3	0	0	-3	43			-
	Evening	Approaching	85.6	3600	5	750	36	7	3	-10	0	-15	35	49	51	-
08	time	Departure	86.1	3600	4	750	36	6	3	-10	0	-15	35			•
'acht		Approaching & Departure	72.1	3600	3	135	36	5	3 _	0	0	-7	37]		-
		Approaching	71.2	3600	1	30	36	0	3	· 0	0	-1	38	_		5
.PG		Departure	71.2	3600	1	30	36	0	3	0	0	-1	38			For worst case 60min scenario, SEL of arrival activity would be used for departure activity in the assessment
	l	Approaching	71.3	3600	1	50	36	0	3	0	0	-3	36	_		-
PC	·	Departure	74.5	3600	1	50	36	0	3	0	0	-3	39]		-
		Approaching	77.7	3600		50	<u>- </u>	-	3	0	0	-		_		No operation during nighttime
MW		Departure	78.6	3600	-	50	•	·	3	0	0	-		1		No operation during nighttime
	Nighttime	Approaching	85.6	3600	3	750	36	5	3	-10	0	-15	33	.42	46	· -
DB		Departure	86.1	3600	3	750	36	5	3	-10	0	-15	34	_		•
'acht		Approaching & Departure	72.1	3600	-	135	-	-	3	0	0	•	-	_		No operation during nighttime
		Approaching	71.2	3600	-	30	•		3	0	0	-				No operation during nighttime
_PG		Departure	71.2	3600	-	30	•		3	0	0	-	•			No operation during nighttime

C - Peng Chau Kai To; MW - Mui Wo Kai To; DB - Discovery Bay Ferry; TB - Tugboat + barge; DB fuel - Discovery Bay Ferry for petrol filling; LPG - LPG container vessel

Estimated SEL at reference distance of 25m.

Time = 3600s for 1 hour period.

No. of Yacht in 1 hour (Both approaching & departure)

Measured background noise level (BNL) at free field condition , facade correction (+3 dB(A)) has been added.

235928

Project Title: Optimization of Land Use in Discovery Bay

Title:

Marine Traffic Noise Assessment

Assessment Point: N10b-A10

Case 1: Peng Chau Kaito, Mui Wo Kaito, Discovery Bay Ferry & Tugboat with barge in 60mins

									Correcti	on, dB(A)			Predicted Noise Level, Leq (somin)	Overali Noise Level, Leq (60min) dB(A)	Prevailing Noise Level, Leq (60min)	Remark
Line	Period	Headway	SEL @ 25m, dB(A) ^[7]	Time, s ^[3]	No. of Ferry ⁽⁴⁾	Distance, m	Time	No.	Facade	Barrier	Directivity	Distance	dB(A)		dB(A) ^[5]	
		Approaching	71.3	3600	2	85	36	3	3	0	0	-5	36			-
PC] [Departure	74.5	3600	2	85	36	3	3	0	0	-5	40			-
] [Approaching	77.7	3600	1	85	36	0	3	0	0	-5_	40			-
MW	Daytime /	Departure	78.6	3600	1	85	36	0	3	0	0	-5_	41			-
	Evening	Approaching	85.6	3600	5	830	36	7	3	0	0	-15	45	51	51	•
DB	time	Departure	86.1	3600	4	830	36	6	3	0	0	-15	44			-
Yacht] [Approaching & Departure	72.1	3600	3	55	36	5	3	0	0	-3	41			-
		Approaching	80.0	3600	1	100	36	0	3	. 0	0	-6	41	_}		For worst case 60mln scenario, activity with higher SEL
TB	·	Departure	79.0	3600	-	100		-	3	0	0	-	-			would be used for assessment
		Approaching	71.3	3600	1	85	36	0	3	0	0	-5_	33			-
PC] [Departure	74.5	3600	1	85	36	0	3	0	0	-5	37			-
		Approaching	77.7	3600	-	85		-	3	0	0		-			No operation during nighttime
MW] [Departure	_78.6	3600	<u> </u>	85	•	-	3	0	0 _		-]		No operation during nighttime
	Nighttime	Approaching	85.6	3600	3	830	36	5	3	0	0	-15_	43	47	46	
DB] [Departure	86.1	3600	3	830	36	5	3	0	0	-15	43			-
Yacht		Approaching & Departure	72.1	3600	-	55	-	•	3	0	0		-			No operation during nighttime
	-	Approaching	80.0	3600	-	100		-	3	0	0	-	-			No operation during nighttime
TB	Ĺ [Departure	79.0	3600	-	100	•		3	0	0					No operation during nighttime

Note:

[1] PC - Peng Chau Kai To; MW - Mul Wo Kai To; DB - Discovery Bay Ferry; TB - Tugboat + barge; DB fuel - Discovery Bay Ferry for petrol filling; OT - Oil Tanker

[2] Estimated SEL at reference distance of 25m.

[3] Time = 3600s for 1 hour period.

[4] No. of Yacht in 1 hour (Both approaching & departure)

[5] Measured background noise level (BNL) at free field condition, facade correction (+3 dB(A)) has been added.

Case 2: Peng Chau Kaito, Mui Wo Kaito, Discovery Bay Ferry & Sand Barge in 60mins

									Correcti	on, dB(A)		96.3	Predicted Noise Level, Leq (somin)	Overall Noise Level, Leq (somin) dB(A)	Prevailing Noise Level, Leq (somin)	Remark
Line	Period	Headway	SEL @ 25m, dB(A) ^[2]	Time, s ^[3]	No. of Ferry ^[4]	Distance, m	Time	No.	Facade	Barrier	Directivity	Distance	dB(A)		dB(A) ^[5]	
		Approaching	71.3	3600	2	85	36	3	3	0	0	-5	36			-
PC		Departure	74.5	3600	2	85	36	3	3	0	0	-5	40			•
		Approaching	77.7	3600	1	85	36	0	3	0	0	-5	40			-
MW	Daytime /	Departure	78.6	3600	1	85	36	0	3	0	0	-5	41			
	Evening	Approaching	85.6	3600	5	830	_36	7	3	0	0	-15	45	51	51	-
DB	<u> </u>	Departure	86.1	3600	4	830	36	6	3	0	0	-15	44			-
'acht		Approaching & Departure	72.1	3600	3	55	36	5	3	0	0	-3	41	_		-
		Approaching	77.7	3600	11	100	36	0	3	_0	0	-6	39			For worst case 60min scenario, activity with higher SEI
SB	-	Departure	77.7	3600	-	100			3	0	0	-				would be used for assessment
		Approaching	71.3	3600	1	85	36	0	3	0	0	-5	33			-
PC	[Departure	74.5	. 3600	1	85	36	0	3_	0	0	-5_	37	_j		-
	[Approaching	77.7	3600	-	85		-	3	0	0	-		_		No operation during nighttime
MW	[Departure	78.6	3600		85			3	0	0		<u> </u>	_		No operation during nighttime
	Nighttime	Approaching	85.6	3600	3	830	36	5	3	- 0	0	-15	43	47	46	-
DB		Departure	86.1	3600	3	830	36	5	3	0	0	-15	43	J · [·
'acht		Approaching & Departure	72.1	3600	-	55		-	3	0	0		•]		No operation during nighttime
		Approaching	77.7	3600	-	100			3	0	. 0		-			No operation during nighttime
SB		Departure	77.7	3600		100		-	3	0	0	<u> </u>				No operation during nighttime

Note:

[1] PC - Peng Chau Kai To; MW - Mui Wo Kai To; DB - Discovery Bay Ferry; TB - Tugboat + barge; DB fuel - Discovery Bay Ferry for petrol filling; SB - Sand Barge

[2] Estimated SEL at reference distance of 25m.

[3] Time = 3600s for 1 hour period.

[4] No. of Yacht in 1 hour (Both approaching & departure)

[5] Measured background noise level (BNL) at free field condition, facade correction (+3 dB(A)) has been added.

Gilen/Aproject/235926\12 Reports Deliverables\6 Revised Draft 4\Area 10b\Appendix\Appendix\Appendix 5.3 (wo directivity) x\sx

Page

.: 235928

Project Title: Optimization of Land Use in Discovery Bay

me. Manne

Marine Traffic Noise Assessment

Assessment Point: N10b-A10

Case 3: Peng Chau Kaito, Mui Wo Kaito, Discovery Bay Ferry & LPG container vessel in 60mins

			, Discovery Bay Forty & E.			,			Correcti	on, dB(A)			Predicted Noise Level, Leq (comin) dB(A)	Oversil Noise Level, Leq (Somin) dB(A)	Prevailing Noise Level, Leq _(60min) dB(A) ^[5]	Remark
Line	Period	Headway	SEL @ 25m, dB(A) ^[2]	Time, s ^[3]	No. of Ferry ^[4]	Distance, m	Time	No.	Facade	Barrier	Directivity	Distance	OB(A)		OB(A)**	
		Approaching	71.3	3600	2	85	36	3	3	0	0	-5	36			-
PC]	Departure	74.5	3600	2	85	36	3	3	0	0	-5	40			
		Approaching	77.7	3600	1	85	36	0	3	0	0	-5	40			-
MW		Departure	78.6	3600	1	85	_ 36	0	3	0	0	-5	41	_		•
	Daytime / Evening	Approaching	85.6	3600	5	830	36	7	3	0	0	-15	45	50	51	
DB	time	Departure	86.1	3600	4	830	36	6	3	0	0	-15	44]		·
Yacht		Approaching & Departure	72.1	3600	3	55	36	5	3	0	0	-3	41]		· ·
		Approaching	71.2	3600	1	100	36	0	3	0	0	-6	33	<u> </u>		
LPG		Departure	71.2	3600	1	100	36	0	3	0	o	-6	33			For worst case 60min scenario, SEL of arrival activity would be used for departure activity in the assessment
		Approaching	71.3	3600	1	85	36	0	3	0	0	-5	33			-
PC] [Departure	74.5	3600	1	85	36	0	3	0	0	-5	_37			
	} {	Approaching	77.7	3600		85	-	-	3	0	0		· .]		No operation during nighttime
MW		Departure	78.6	3600	-	85		-	3	0	0	-]		No operation during nighttime
	Nighttime	Approaching	85.6	3600	3	830	36	5	3	0	0	-15	43	47	46	-
DB		Departure	86.1	3600	3	830	36	5	3	0	0	-15	43			<u>-</u>
Yacht] [Approaching & Departure	72.1	3600		55	_	-	3	0	0	<u>-</u>	-	,		No operation during nighttime
		Approaching	71.2	3600	-	100	-	-	3	0	0					No operation during nighttime
LPG		Departure	71,2	3600	_	100_			3	0	0		-			No operation during nighttime

No.

[1] PC - Peng Chau Kai To; MW - Mui Wo Kai To; DB - Discovery Bay Ferry; TB - Tugboat + barge; DB fuel - Discovery Bay Ferry for petrol filling; LPG - LPG container vessel

[2] Estimated SEL at reference distance of 25m.

[3] Time = 3600s for 1 hour period.

[4] No. of Yacht in 1 hour (Both approaching & departure)

[5] Measured background noise level (BNL) at free field condition, facade correction (+3 dB(A)) has been added.

235928

Project Title: Optimization

Optimization of Land Use in Discovery Bay Marine Traffic Noise Assessment

Assessment Point: N10b-A15

Case 1: Peng Chau Kaito, Mul Wo Kaito, Discovery Bay Ferry & Tugboat with barge in 60mins

									Correction	on, dB(A)			Predicted Noise Level, Leq (somin)	Overali Noise Level, Leq _(Sonin) dB(A)	Prevailing Noise Level, Leq _(somin)	Remark
Line	Period	Headway	SEL @ 25m, dB(A)[7]	Time, s ⁽³⁾	No. of Ferry ^[4]	Distance, m	Time	No.	Facade	Barrier	Directivity	Distance	dB(A)	Ead (souls) do(h)	dB(A) ^[5]	
		Approaching	71.3	3600	2	130	36	3	3	0	0	-7	35			
PC]	Departure	74.5	3600	2	130	36	3	3	0	0	-7	38			
		Approaching	77.7	3600	1	130	36	0	3	0	0	-7	38			
MW	Daytime /	Departure	78.6	3600	1	130	36	0_	3	0	0	-7	39			
1	Evening	Approaching	85.6	3600	5	825	36	7	3	0	0	-15	45	50	51	·
DB	time	Departure	86.1	3600	4	825	36	6	3	0	0	-15	44	.		
Yacht] [Approaching & Departure	72.1	3600	3	45	36	5	3	0	0	-3	42			<u>.</u>
	1	Approaching	80.0	3600	1	130	36	0	3	0	0	-7	40]		For worst case 60mln scenario, activity with higher SEL
ТВ	ļ	Departure	79.0	3600		130			3	0	0	-]		would be used for assessment
		Approaching	71.3	3600	1	130	36	0	3	0	0	-7	32			-
PC) ì	Departure	74.5	3600	1	130	36	0	3	0	0	-7_	35]		-
ł		Approaching	77.7	3600		130		-	3	0	0	-	-]		No operation during nighttime
MW		Departure	78.6	3600	<u> </u>	130			3	0	0		-			No operation during nighttime
1	Nighttime	Approaching	85.6	3600	3	825	36	5	3	0	0	-15	43	46	46	•
DB	1	Departure	86.1	3600	3	825	36	5	3	_ 0	0	-15	43	·		
Yacht		Approaching & Departure	72.1	3600	_	45	-		3	0	0	-		<u> </u>		No operation during nighttime
1	_	Approaching	80.0	3600	-	130		•	3	0	0		<u>.</u>	}		No operation during nighttime
ТВ		Departure	79.0	3600	-	130	-	-	3	0	0					No operation during nighttime

Note:

[1] PC - Peng Chau Kai To; MW - Mui Wo Kai To; DB - Discovery Bay Ferry; TB - Tugboat + barge; DB fuel - Discovery Bay Ferry for petrol filling; OT - Oil Tanker

- [2] Estimated SEL at reference distance of 25m.
- [3] Time = 3600s for 1 hour period.
- [4] No. of Yacht in 1 hour (Both approaching & departure)

[5] Measured background noise level (BNL) at free field condition, facade correction (+3 dB(A)) has been added.

Case 2: Peng Chau Kaito, Mui Wo Kaito, Discovery Bay Ferry & Sand Barge in 60mins

	-	•	, Discovery bay Ferry & Sa						Correcti	on, dB(A)			Predicted Noise	Overali Noise Level,	Prevailing Noise	
Line	Period	Headway	SEL @ 25m, dB(A) ^[2]	Time, s ^[3]	No. of Ferry ^[4]	Distance, m	Time	No,	Facade	Barder	Directivity	Distance	Level, Leq _(60min) dB(A)	Leq (tomin) dB(A)	Level, Leq _(60min) dB(A) ^[6]	Remark
		Approaching	71.3	3600	2	130	36	3	3	0	0	-7	35			-
PC		Departure	74.5	3600	2	130	36	3	3	0	0	-7	38			
		Approaching	77.7	3600	1	130	36	0	3	0	0	-7	38]		·
MW	Daytime /	Departure	78.6	3600	1	130	36	0	3	0	0	-7	39]		
	Evening	Approaching	85.6	3600	5	825	36	7	3	0 _	00	-15	45	50	51	-
D8	App	Departure	86.1	3600	4	825	36	6	3	0	0	-15	44			•
acht		Approaching & Departure	72.1	3600	3	45	36	5	3	0	0	-3	42]		-
	-	Approaching	77.7	3600	1	130	36	0	3	0	0	-7	38]		For worst case 60min scenario, activity with higher S
SB		Departure	77.7	3600	-	130		1	3	0	0	-	-			would be used for assessment
		Approaching	71.3	3600	1	130	36	0	3	0	0	-7	32			
PC		Departure	74.5	3600	1_	130	36	0	3	0	0	-7	35			-
		Approaching	77.7	3600		130			3_	0	0		<u> </u>			No operation during nighttime
٨W		Departure	78.6	3600	-	130		-	3	0	0	<u> </u>				No operation during nighttime
	Nighttime	Approaching	85.6	3600	3	825	36	5	3	0	0	-15	43	46	46	
DB		Departure	86.1	3600	3	825	36	5	3	0	0	-15	43			
acht		Approaching & . Departure	72.1	3600	-	45	-	-	3	0	0					No operation during nighttime
		Approaching	77.7	3600	-	130			3	0	0					No operation during nighttime
SB		Departure	77.7	3600	_	130	-		3	0	0	-	•]		No operation during nighttime

Note:

[1] PC - Peng Chau Kai To; MW - Mui Wo Kai To; DB - Discovery Bay Ferry; TB - Tugboat + barge; DB fuel - Discovery Bay Ferry for petrol filling; SB - Sand Barge

[2] Estimated SEL at reference distance of 25m.

- [3] Time = 3600s for 1 hour period.
- [4] No. of Yacht in 1 hour (Both approaching & departure)

[5] Measured background noise level (BNL) at free field condition , facade correction (+3 dB(A)) has been added.

235928

Project Title: Optimization of Land Use in Discovery Bay

Title: Ma

Marine Traffic Noise Assessment

Assessment Point: N10b-A15

Case 3: Peng Chau Kaito, Mui Wo Kaito, Discovery Bay Ferry & LPG container vessel in 60mins

		_				•			Correcti	on, dB(A)			Predicted Noise Level, Leq (somin)	Overall Noise Level, Leq (60min) dB(A)	Prevailing Noise Level, Leq (60min)	Remark
Line	Period	Headway	SEL @ 25m, dB(A) ^[2]	Time, s ^[3]	No. of Ferry ^[4]	Distance, m	Time	No.	Facade	Barrier	Directivity	Distance	dB(A)		dB(A) ^[5]	
		Approaching	71.3	3600	2	130	36	3	3	0	0	-7	35			
PC		Departure	74.5	3600	2	130	36	3	3	0	0	7	38]		-
) i	Approaching	77.7	3600	1	130	36	0	3	0	0	-7	38			•
MW]	Departure	78.6	3600	1	130	36	0	3	0	0	-7	39]		-
	Daytime / Evening	Approaching	85.6	3600	5	825	36	7	3	0	0	-15	45	50	51	
DB	time	Departure	86.1	3600	4	825	36	6	3	0	0	-15	44] "	٠.	-
Yacht]	Approaching & Departure	72.1	3600	3	45	36	5	3	0	0	-3	42	}		-
	}	Approaching	71.2	3600	1	130	36	0	3	0	0	7	31]		
LPG		Departure	71.2	3600	1	130	36	0 1	3	0	0	-7	31			For worst case 60min scenario, SEL of arrival activity would be used for departure activity in the assessment
		Approaching	71.3	3600	1	130	36	0	3	0	_ 0	-7	32			· .
PC		Departure	74.5	3600	_1	130	36	0	3	0	0	-7	35			<u>-</u>
] [Approaching	77.7	3600		130	-	-	3	0	0	-]		No operation during nighttime
MW] [Departure	78,6	3600		130	-	-	3	0	0	-		}		No operation during nighttime
	Nighttime	Approaching	85.6	3600	3	825	36	5	3	0	0	-15	43	46	46	·
DB] [Departure	· 86.1	3600	3	825	36	5	3	0	0	-15	43]		-
Yacht		Approaching & Departure	72.1	3600		45		-	3 _	0	0	-	<u> </u>]		No operation during nighttime
	-	Approaching	71.2	3600		130			3	0	0		-]		No operation during nighttime
LPG		Departure	71.2	3600		130			3	0	0		<u>.</u>			No operation during nighttime

Note:

[1] PC - Peng Chau Kai To; MW - Mul Wo Kai To; DB - Discovery Bay Ferry; TB - Tugboat + barge; DB fuel - Discovery Bay Ferry for petrol filling; LPG - LPG container vessel

[2] Estimated SEL at reference distance of 25m.

[3] Time = 3600s for 1 hour period.

[4] No. of Yacht in 1 hour (Both approaching & departure)

[5] Measured background noise level (BNL) at free field condition, facade correction (+3 dB(A)) has been added.

235928

Project Title: Optimization of Land Use in Discovery Bay

Marine Traffic Noise Assessment

Assessment Point: N10b-B1

Case 1: Peng Chau Kaito, Mui Wo Kaito, Discovery Bay Ferry & Tugboat with barge in 60mins

									Correcti	on, dB(A)			Predicted Noise Level, Leq (60min)	Overall Noise Level, Leq (60min) dB(A)	Prevailing Noise Level, Leq (60min)	Remark
Line	Period	Headway	SEL @ 25m, dB(A)[2]	Time, s ^[3]	No. of Ferry ^[4]	Distance, m	Time	No.	Facade	Barrier	Directivity	Distance	dB(A)		dB(A) ^{[9}	
		Approaching	71.3	3600	2	- 30	36	3	3	0	0	-1	41			·
PC_		Departure	74.5	3600	2	30	36	3	3	0	0	-1	44]		·
		Approaching	77.7	3600	1	30	36	0	3	0	0	-1	44			•
MW	Daytime /	Departure	78.6	3600	1	30	36	0	3_	0	0	-1	45			
	Evening		85.6	3600	5	690	36	7	3	-10	0	-14	36	51	51	
DB	time	Departure	86.1	3600	4	690	36	66	3	-10	0	-14	35	_		
Yacht		Approaching & Departure	72.1	3600	3	190	36	5	3	0	0	-9	36	_		
		Approaching	80.0	3600	1	50	36	0	3	0	0	-3	44			For worst case 60min scenario, activity with higher SEL
ТВ		Departure	79.0	3600		50			3	0	0		-			would be used for assessment
_		Approaching	71.3	3600	1	30_	36	0	3	0	0	-1	38			-
PC	ĺĺ	Departure	74.5	3600	1	30	36	0	3	0	0	-1	41]		
		Approaching	77.7	3600	-	30			3	0	0		<u> </u>]		No operation during nighttime
MW	}	Departure	78.6	3600	-	30		<u></u>	3	0	0]		No operation during nighttime
	Nighttime	Approaching	85.6	3600	3	690	36	5	3	-10	0	-14	33	44	46	
DB		Departure	86.1	3600	3	690	36	5	3_	-10	0	-14	34	_		
Yacht		Approaching & Departure	72.1	3600	-	190			3	0	0	-		_		No operation during nighttime
		Approaching	80.0	3600	-	50			3	0	0			_		No operation during nighttime
ТВ	<u> </u>	Departure	79.0	3600	-	50	-		3	0	0	-		[No operation during nighttime

[1] PC - Peng Chau Kai To; MW - Mui Wo Kai To; DB - Discovery Bay Ferry; TB - Tugboat + barge; DB fuel - Discovery Bay Ferry for petrol filling; OT - Oil Tanker

[2] Estimated SEL at reference distance of 25m.

[3] Time = 3600s for 1 hour period.

[4] No. of Yacht in 1 hour (Both approaching & departure)

[5] Measured background noise level (BNL) at free field condition, facade correction (+3 dB(A)) has been added.

Case 2: Peng Chau Kaito, Mui Wo Kaito, Discovery Bay Ferry & Sand Barge in 60mins

									Correcti	lon, dB(A)			Predicted Noise Level, Leq (comin)	Overall Noise Level, Leq (60min) dB(A)	Prevailing Noise Level, Leq (60min)	- Remark
Line	Period	Headway	SEL @ 25m, dB(A) ^[2]	Time, s ^[3]	No. of Ferry ^[4]	Distance, m	Time	No.	Facade	Barrier	Directivity	Distance	dB(A)		dB(A) ^[5]	
		Approaching	71.3	3600	2	30	36	3	3_	0	0	-1	41			-
PC		Departure	74.5	3600	2	30	36	3	3	0	0	-1	44	_		-
]	Approaching	77.7	3600	1	30	36	0	3	0	0	-1	44]		
MW	Daytime /	Departure	78.6	3600	1	30	36	_ 0	3	0	0	-1	45			•
	Evening	Approaching	85.6	3600	5	690	36	7	3	-10	0	-14	36	51	51	-
DB	time	Departure	86.1	3600	4	690	36	6	3	-10	0	-14	35	_		
acht_		Approaching & Departure	72.1	3600	3	190	36	5	3	0	0	-9	36]		·
] [Approaching	77.7	3600	1	50	36	0	3	0	0	-3	42	ا ا		For worst case 60min scenario, activity with higher St
SB		Departure	77.7	3600	-	50	-		3	0	0					would be used for assessment
		Approaching	71.3	3600	1	30	36	0	3	0	0	-1	38] .		-
PC		Departure	74.5	3600	1	30	36	0	3	0	0	-1	41			•
	}	Approaching	77.7	3600		30			3	0	0	<u> </u>]		No operation during nighttime
мw	. [Departure	78.6	3600	-	30	-		3	0	0		<u> </u>]		No operation during nighttime
	Nighttime	Approaching	85.6	3600	3	690	36	5	3	-10	0	-14	33	44	46	
DB		Departure	86.1	3600	3	690	36	5	3	-10	0	-14	34	}		•
acht		Approaching & Departure	72.1	3600	-	190	-		3	0	0	-]		No operation during nighttime
		Approaching	77.7	3600	-	50			3	0	0	<u> </u>	-	_		No operation during nighttime
SB		Departure	77.7	3600	-	50		-	3	0 _	. 0					No operation during nighttime

[1] PC - Peng Chau Kai To; MW - Mui Wo Kai To; DB - Discovery Bay Ferry; TB - Tugboat + barge; DB fuel - Discovery Bay Ferry for petrol filling; SB - Sand Barge

[2] Estimated SEL at reference distance of 25m.

[3] Time = 3600s for 1 hour period.

[4] No. of Yacht in 1 hour (Both approaching & departure)

[5] Measured background noise level (BNL) at free field condition , facade correction (+3 dB(A)) has been added.

G. enviproject(235928)12 Reports Deliverables/8 Revised Draft 4\Area 10b\Appendix\Appendix 5 3 (wo directivity) xisx

235928

Project Title: Optimization of Land Use in Discovery Bay

Title:

Marine Traffic Noise Assessment

Assessment Point: N10b-B1

Case 3: Peng Chau Kaito, Mui Wo Kaito, Discovery Bay Ferry & LPG container vessel in 60mins

									Correcti	on, dB(A)			Predicted Noise Level, Leq (comin)	Overall Noise Level, Leq (comin) dB(A)	Prevailing Noise Level, Leq (comin)	Remark
Line	Period	Headway	SEL @ 25m, dB(A)[2]	Time, s ^[3]	No. of Ferry ^[4]	Distance, m	Time	No.	Facade	Barrier	Directivity	Distance	dB(A)		dB(A) ^[5]	
		Approaching	71.3	3600	2	30	36	3	3	0	0	-1	41		-	•
PC]	Departure	74,5	3600	2	30	36	3	3	0	0	-1	44			•
		Approaching	77.7	3600	1	30	36	0	3	0	0	-1	44]		<u>-</u>
· MW		Departure	78.6	3600	1	30	36	0	3	0	0	-1	45			-
	Daytime / Evening	Approaching	85.6	3600	5	690	36	7	3	-10	0	-14	36	51	51	
DB .	time	Departure	86.1	3600	4	690	36	6	3	-10	0	-14	35			
Yacht		Approaching & Departure	72.1	3600	3	190	36	5	3	0	0	-9	36			
		Approaching	71.2	3600	1	50	36	0	3	0	0	-3	36]		
LPG		Departure	71.2	3600	1	50	36	0	3	0	0	-3	36			For worst case 60min scenario, SEL of arrival activity would be used for departure activity in the assessment
		Approaching	71.3	3600	1	30	36	0	3	0	0	-1	38			
PC		Departure	74.5	3600	1	30	36	0	3	0	0	-1	41	ļ		•
ŀ		Approaching	77.7	3600		30	-		3	0	0	-				No operation during nighttime
MW]	Departure	78.6	3600	-	30	-		3	0	0	•	-			No operation during nighttime
	Nighttime	Approaching	85.6	3600	3	690	36	5	3	-10	0	-14	33	44	46	<u> </u>
DB]	Departure	86.1	3600	3	690	36	5	3	-10	0	-14	34]		-
Yacht		Approaching & Departure	72.1	3600	-	190	-	_	3	0	0	-	<u>-</u>			No operation during nighttime
		Approaching	71.2	3600	_	50	-	-	3	0	0	•	-]		No operation during nighttime
LPG		Departure	71.2	3600		50	-		3	0	0		<u> </u>			No operation during nighttime

Note:

[1] PC - Peng Chau Kai To; MW - Mui Wo Kai To; DB - Discovery Bay Ferry; TB - Tugboat + barge; DB fuel - Discovery Bay Ferry for petrol filling; LPG - LPG container vessel

[2] Estimated SEL at reference distance of 25m.

[3] Time = 3600s for 1 hour period.

[4] No. of Yacht in 1 hour (Both approaching & departure)

[5] Measured background noise level (BNL) at free field condition , facade correction (+3 dB(A)) has been added.

Appendix 5.4

Fixed Noise Assessment Methodology and Source Term Measurement

Methodology

General

The fixed noise sources located within 300m of this development are considered as assessment area. Any representative planned located within the assessment area would be considered in this noise assessment, adopting the noise criteria as discussed in **Appendix 5.1**.

Operational Information

All operational information is based on either site observation or operation schedule from operators for typical days. Based on site observation, marine-based fixed noise sources were mainly generated from Peng Chau kaito, Mui Wo kaito, tugboat with barge, vessel for the gas bottle supplier and sand barge. As shown in **Figure 1-1**, a 8m tall solid wall next to the kaito pier, a 9.8m tall solid wall next to the goods delivery pier and a 7.8m tall solid wall at 3-storey low rise development that near the goods delivery pier will be built.

Besides, further enquiry has been made with the operators, and they confirmed that there will be installed with acoustic treatment to enclose the conveyor belt on sand barge and temporary noise barrier for crane on LPG container vessels to reduce noise impact in future operation, therefore, this acoustic treatment would be considered in the noise assessment.

In addition, ferry petrol filling will be conducted in marine base filling station outside Discovery Bay. Therefore, the operation of oil tanker and ferries / vessels petrol filling near kaito pier would be excluded in the noise assessment.

Determination of Sound Power Levels (SWLs)

In order to determine the SWL of each activity, noise measurements for each selected marine-based fixed noise sources along Marina Drive have been conducted. SWLs of each activity were predicted with standard acoustic principles for noise attenuation (such as time, distance). The calculated SWL and the locations of noise sources are presented in this appendix.

Prediction of Noise Impacts

The SELs summarized in the above tables are then converted to establish the facade noise levels at NSRs, taking into account various consideration such as operation time, distances, number of concurrent vessels, facade effects. A summary of equations adopted in the marine traffic noise assessment is given in the table below.

Table A5.6: Summary of equations for marine-based fixed noise assessment

Parameters	Equations
SWL, dB(A)	$SWL = L_{eq (source)} + (20log(d) + 8),$

235928 | Final | November 2015

Parameters	Equations							
•	where							
	$L_{eq (source)} = Measured marine-based fixed noise level, dB(A)$							
	d = Distance between measurement location and the fixed noise source, m							
	$L_{eq 30min} = SWL - (20log(d_1)+8) + 20log(t_1/T) + FC + BC$							
	where $d_1 = D$ istance between fixed noise source and NSR, m							
L _{eq 30min} , dB(A)	t ₁ = Operation time of fixed noise source within a standard assessment period of 30min							
Leq 30min, dD(A)	T = Time period under consideration (30), min							
	FC = With 3 dB(A) facade correction							
	BC = barrier correction (assuming worst case scenario of							
	125Hz) according to Figure D.3 Screening Effects of Barriers of BS5228-1 2014, Code of Practice for Noise and Vibration							
	Control on Construction and Open Sites - Part 1: Noise							

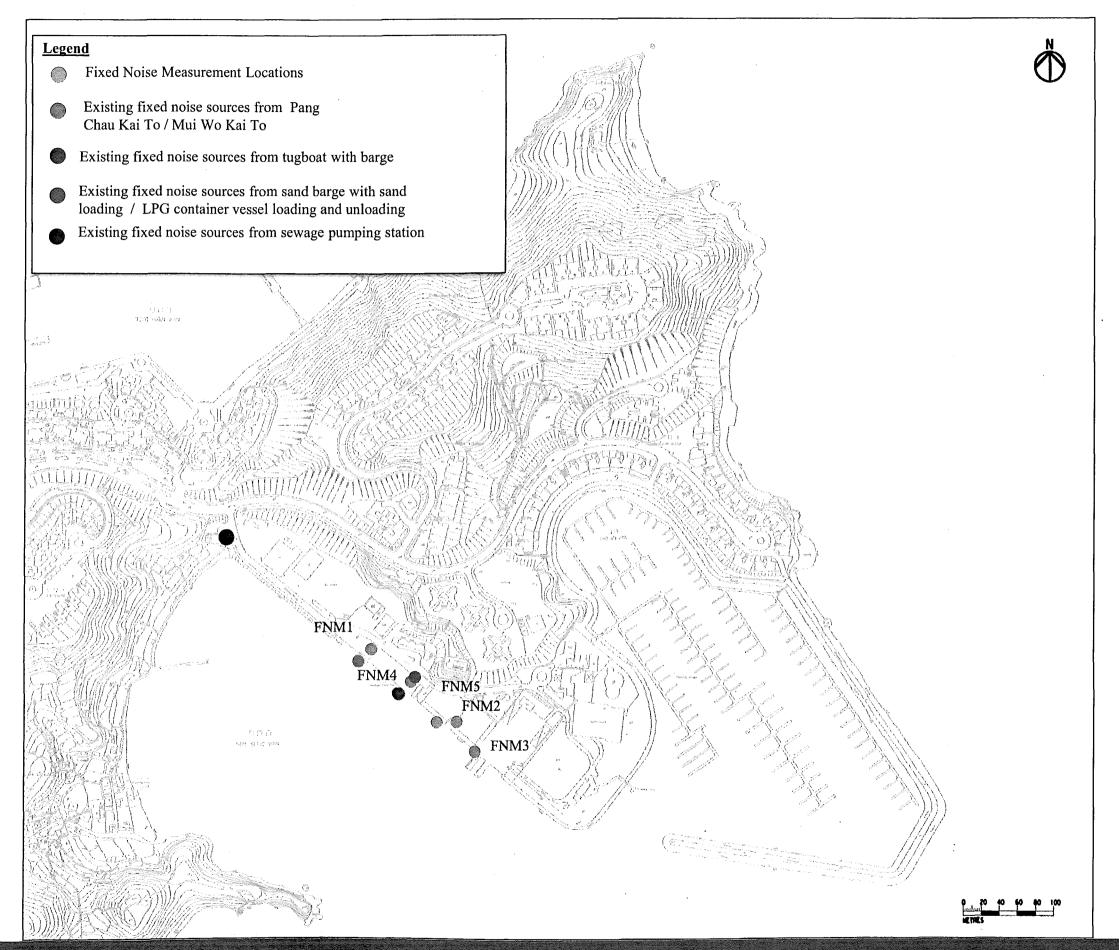
Since all the noise sources from the marine vessels would not occur at the same time, it is important to analyze and establish the possible cases during a typical 30-minute period that would constitute noise impacts. The details of different scenarios are summarized in **Appendix 5.5**.

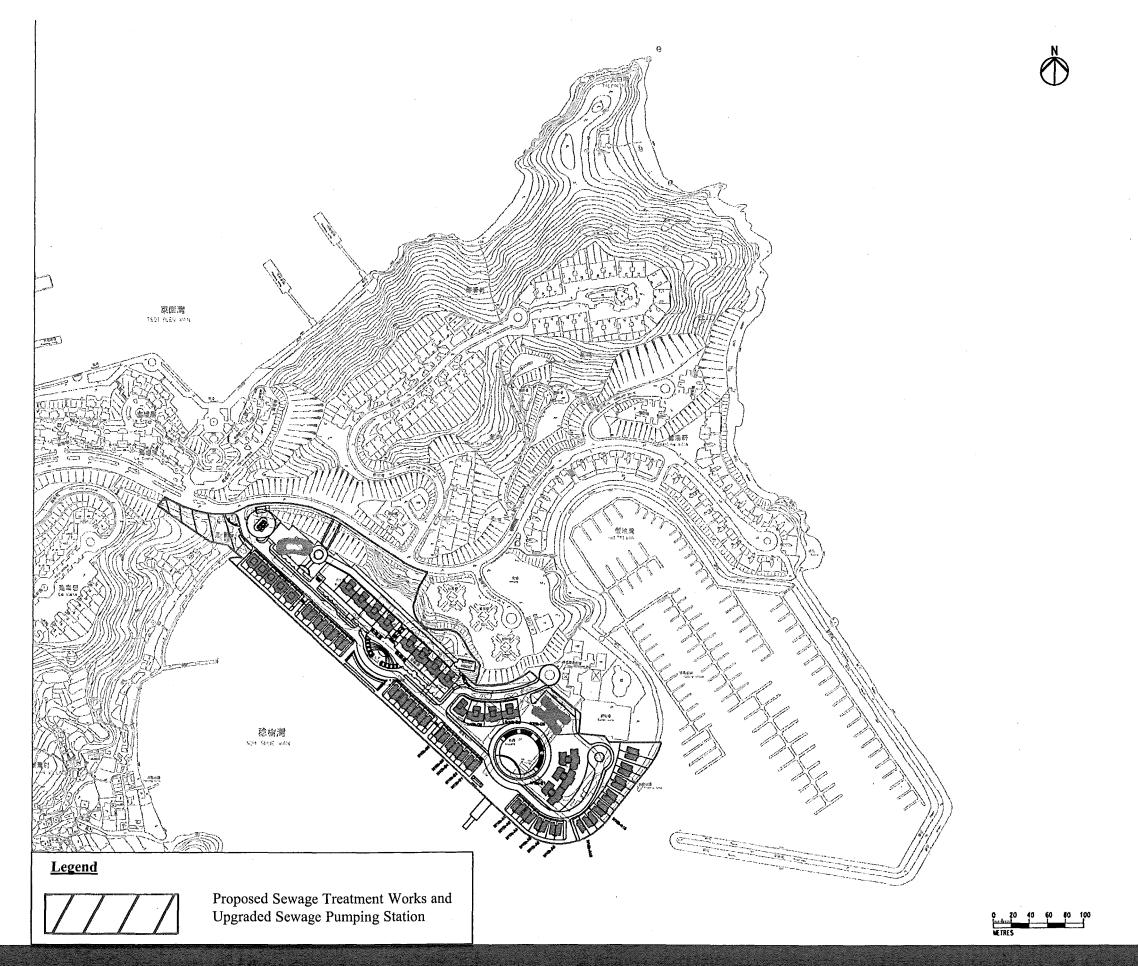
Table A5.7: Summary of all observed possible cases within 30mins

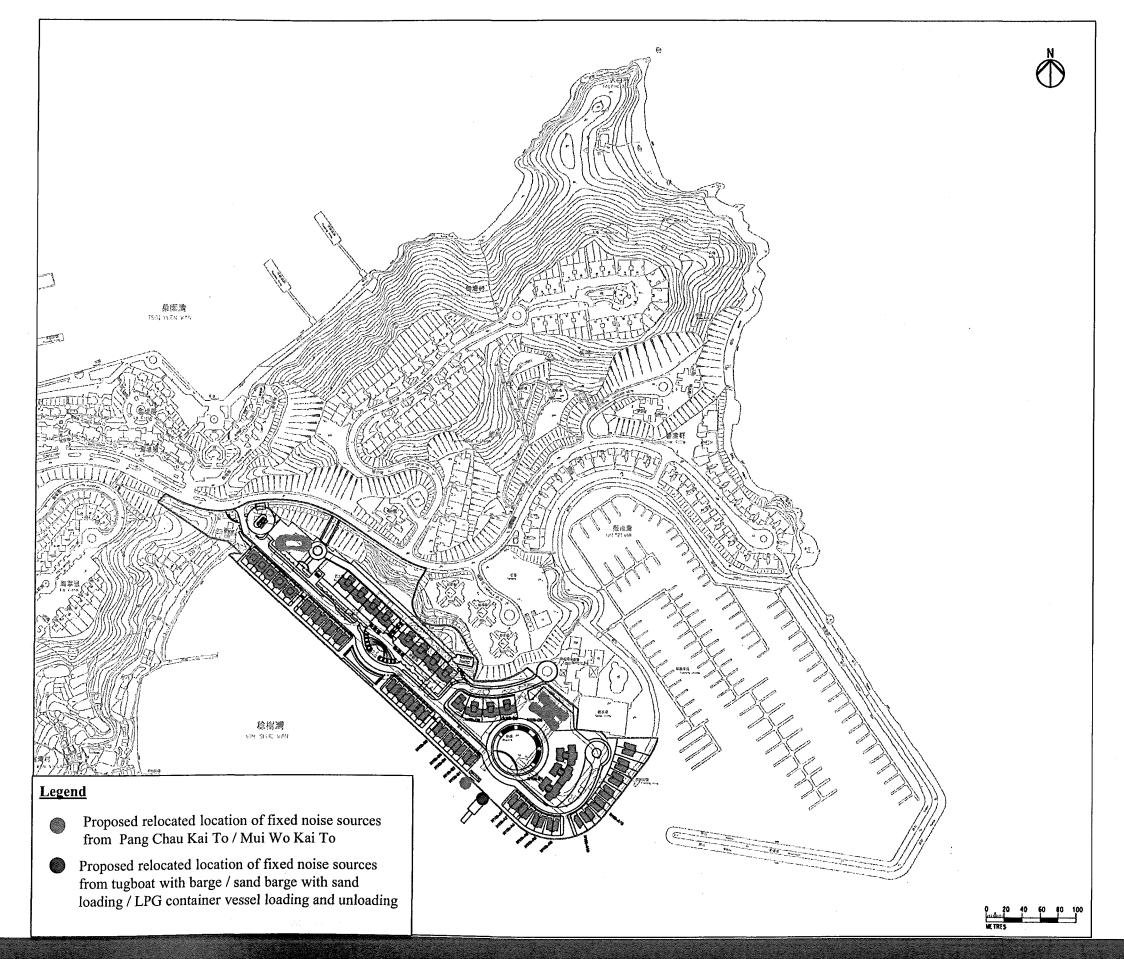
	Description [1]								
Case	PC	MW	тв	SB	LPG				
1	√	√ [2]	√[2]		-				
2	V	√[2]		√(2)					
3	√	√[2]			√[2]				

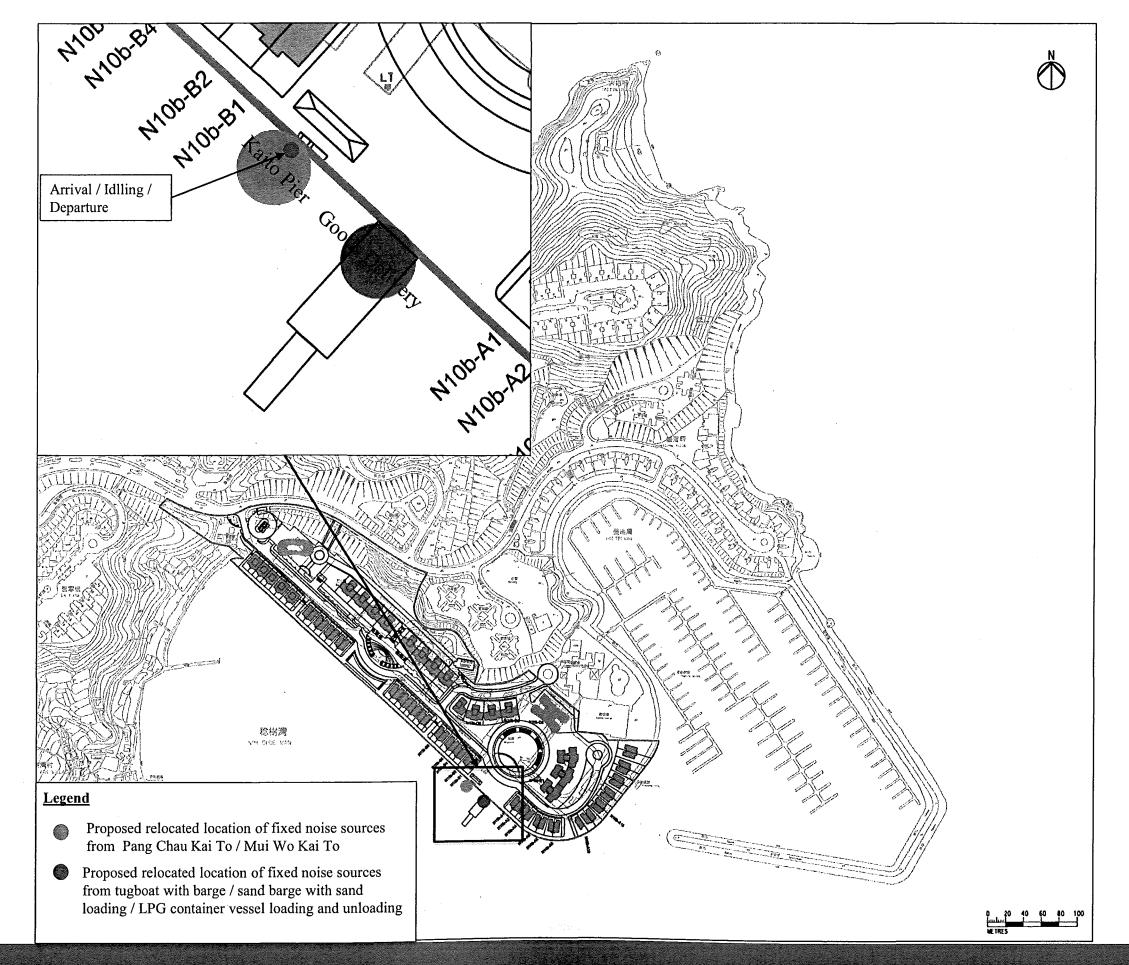
Note:

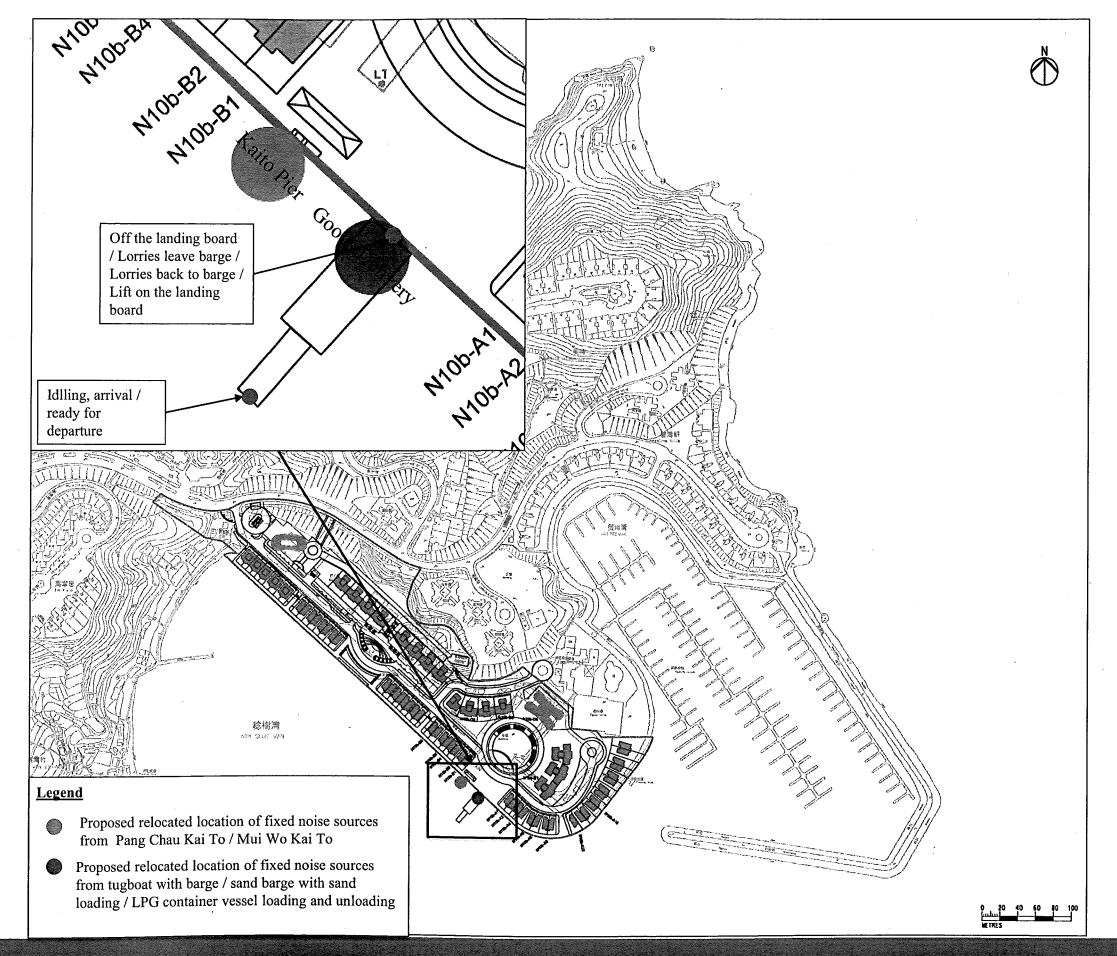
[1] PC - Peng Chau Kaito;

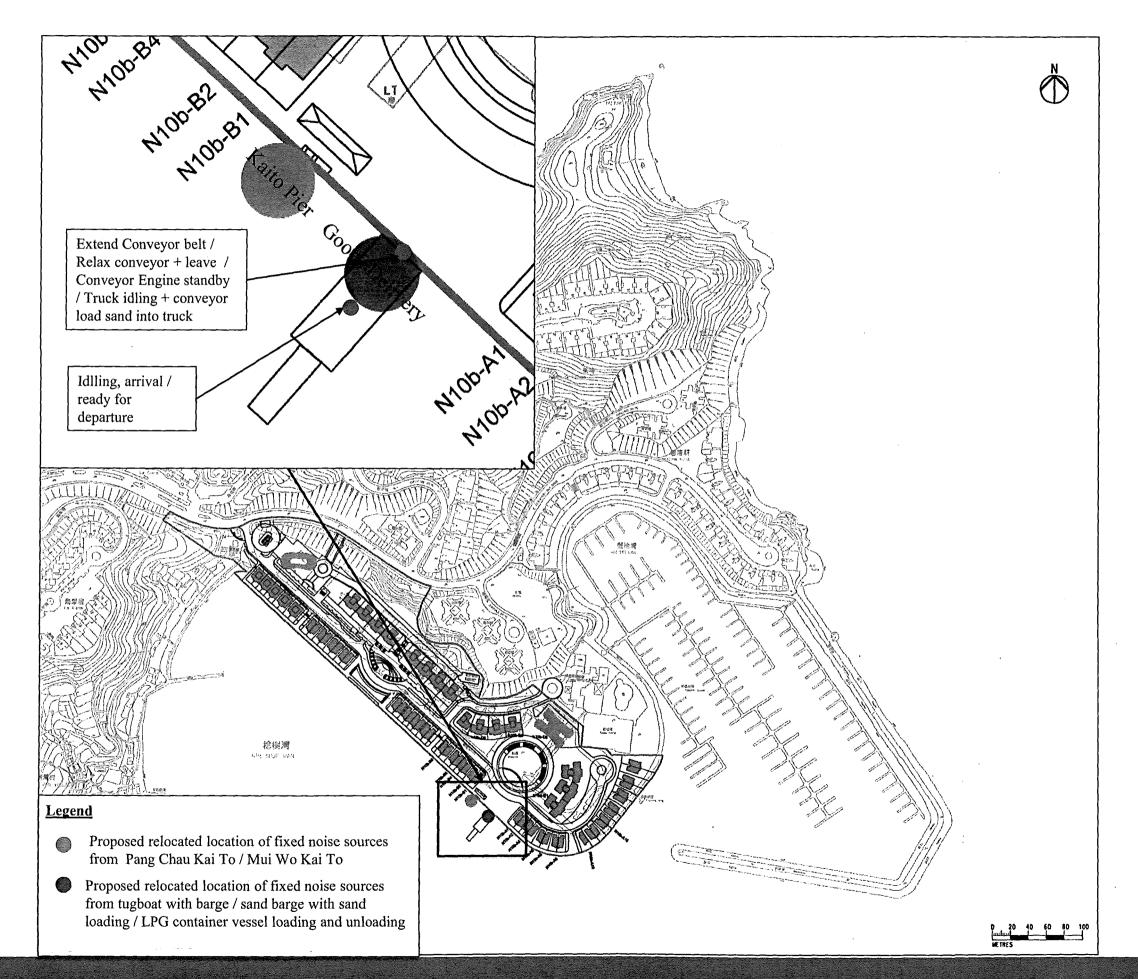

MW - Mui Wo Kaito;

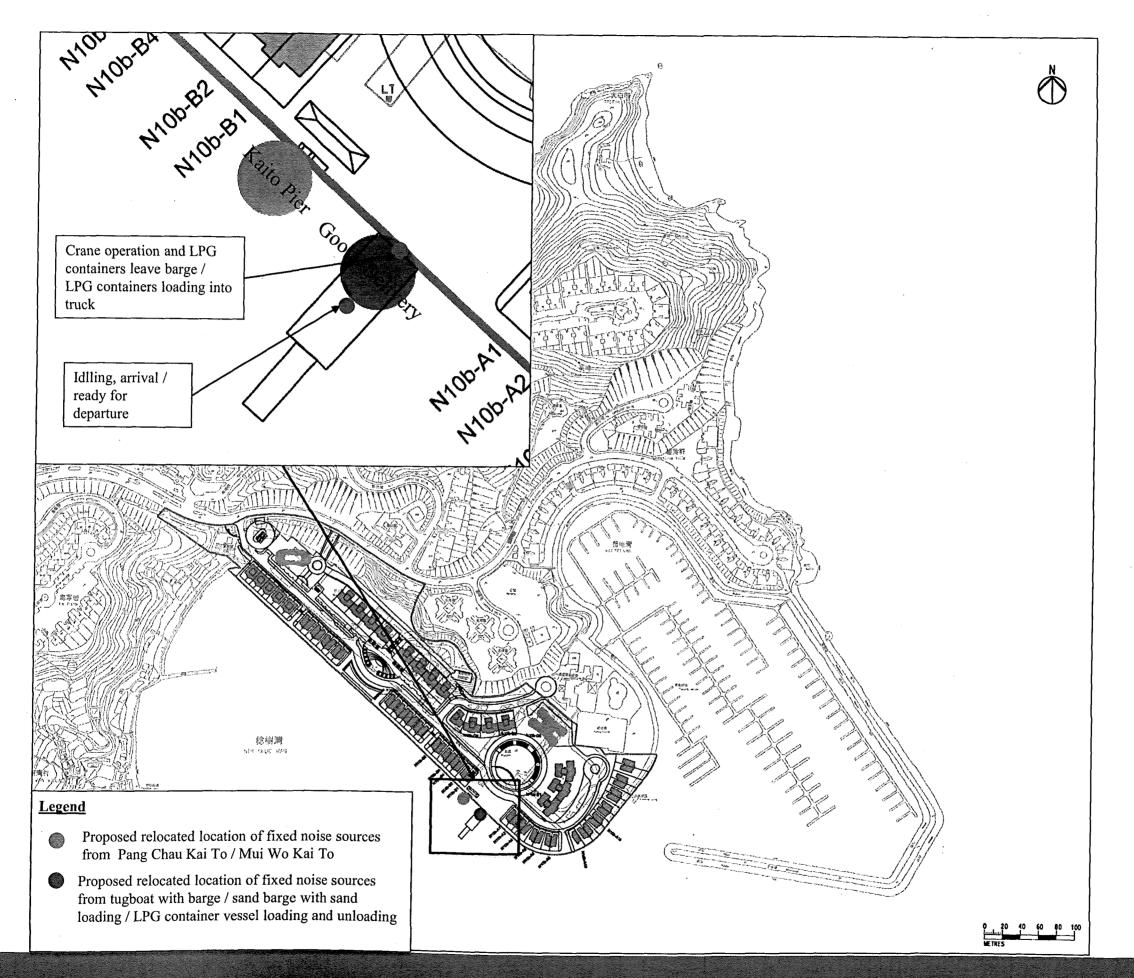

TB - Tugboat with barge from LPG supplier;


SB - Sand barge with sand loading; and


LPG - LPG Container.


[2] Marine vessels operate in daytime only.





Project: Discovery Bay EAS

Job No.: 235928

Fixed Noise Assessment

Title:

Calculation of Sound Power Subtitle: Level (SWL) for each source

Noise Source ID	Description	Activities/Equipment	Activities	Measurement Distance, m			1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		operating time	Worst	Operation Period		
											Daytime	Nighttime	Remark
	Peng Chau Kaito	Idlling - arrival	PC1	15.0	56.8	31.5	88	~1	1	1	Υ	Υ	
PC		Idling	. PC2	15.0	56.7	31.5	88	~5	5	3	Y	Y	
		Idlling - ready for departure	PC3	15.0	59.6	31.5	91	~1	1	1	Υ	Y	
		Idlling - arrival	MW1	15.0	66	31.5	98	~1	1	0	<u>Y</u>	N	<u> </u>
MW	Mui Wo Kaito	Idling	MW2	15.0	58.4	31.5	90	~5	5	0	Y	N	
1		Idlling - ready for departure	MW3	15.0	66.4	31.5	98	~1	1	0	Υ	N	
	t .	Idling for arrival	TB1	25.0	62.9	36.0	99	~10	10	0	Υ	N	For worst case 30 minutes scenario, TB1, TB2 & TB3 have selected for assessment.
		Off the landing board	TB2	15.0	68.1	31.5	100	~1	1	0	Υ	N	
ТВ		Lorries leave barge	TB3	15.0	68.3	31.5	100	~5	5	0	Υ	N	
10		Lorries back to barge	TB4	15.0	68.3	31.5	100	~5	5	0	Υ	N	
		Lift on the landing board	TB5	15,0	66.3	31.5	98	~1	1	0	Υ	N	
		Idling for departure	TB6	25.0	62.9	36.0	99	~5	5	0	Υ	N	
	Sand Barge + Sand Loading Truck	Idling	SB1	15.0	69.8	31.5	101	~1	11	0	Υ	N	For worst case 30 minutes scenario, SB3, SB4 &SB5 have selected for assessment.
		Extend Conveyor belt	SB2	12.0	69.5	29.6	99	~1	1	0	Υ	N	
SB		Conveyor Engine standby	SB3	25.0	57.9	36.0	94	~30	20	0	Υ	N	
		Truck idling + conveyor load sand into truck	SB4	25.0	66.8	36.0	103	~9	9	0	Υ	N	
		Relax conveyor + leave	SB5	15.0	70.7	31.5	102	~1	1	0	Υ	N	
	LPG Container Vessel + LPG Containers Loading Truck	Idlling - arrival	LPG1	5.0	71.2	22.0	93	~1.5	2	0	Υ	N	
		Crane operation and LPG containers leave barge	LPG2	10.0	84.3	28.0	112	~0.5	1	0	Υ	N	
1.00		LPG containers loading into truck	LPG3	5.0	73.5	22.0	95	~1	1	0	Y	N	
		Idlling	LPG4	5.0	69	22.0	91	~5	5	0	Y	N	
,		Crane operation and LPG containers back to barge	LPG5	10.0	79.5	28.0	108	~0.5	1	0	Υ	N	
		Idlling - ready for departure	LPG6	5.0	82.9	22.0	105	~1.5	2	0	Y	N	

Appendix 5.5

Predicted SPL of Fixed Noise Sources

Discovery Bay EAS

Job No.: 235928

Title: Fixed Noise Assessment

Subtitle: Calculation of SPL at Receivers (Daytime)

NSR ID: N105-B1

Case 1 Peng Chau Kaito, Mul Wo Kaito & Tug Boat with Barge

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest separation	Worst operating		C	orrection, d	B(A)	district si	Predicted	
HOISE SOUICE ID	Description	Acuallesizdaihment	dB(A)	distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	20	1	-34	-15	-8	0	3	34	
PC2	Peng Chau Kaito	Idling	88	20	5	-34	-8	-8	0	3	41	
PC3		Idlling - ready for departure	91	20	1	-34	-15	-8	0	3	37	
MW1		Idlling - arrival	98	20	1	-34	-15	-8	0	3	44	
MW2	Mui Wo Kaito	Idling	90	20	5	-34	-8	-8	0	3	43	
MW3		Idlling - ready for departure	98	20	1	-34	-15	-8	0	3	44	
TB1		Idling for arrival	99	55	10	-43	-5	-5	0	3	49	
TB2		Off the landing board	100	43	1	-41	-15	-5	0	3	43	
ТВ3	Tue Book / Book	Lorries leave barge	100	48	5	-42	-8	-5	0	3	49	For worst case 30 minutes scenario, TB1, TB2 &
TB4	Tug Boat + Barge	Lorries back to barge	100	43	5	-41	-8	-5	0	3		TB3 have selected for assessment.
TB5		Lift on the landing board	98	43	1	-41	-15	-5	0	3	-	
TB6		Idling for departure	99	55	5	-43	-8	-5	-0	3	-	
						P	redicted C	Overall Nois	Level, Leq	(30min)dB(A)	54	
								Daytime	riterion (AN	L-5), dB(A) ince, dB(A)	1	

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest	Worst operating		C	orrection, di	B(A)		Predicted	Remark
Noise Source ID	Description	Activities/Edulpment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	20	1	-34	-15	-8	0	3	34	
PC2	Peng Chau Kaito	Idling	88	20	5	-34	-8	-8	0	3	41	
PC3		Idlling - ready for departure-	91	20	1	-34	-15	-8	0	3	37	
MW1		Idlling - arrival	98	20	1	-34	-15	-8	0	3	44	
MW2	Mui Wo Kaito	Idling	90	20	5	-34	-8	-8	0	3	43	
MW3		Idlling - ready for departure	98	20	1	-34	-15	-8	0	3	44	
SB1		Idling	101	43	1	-41	-15	-5	0	3		
SB2		Extend Conveyor belt	99	43	1	-41	-15	-5	0	3	•	
SB3	Sand Barge + Truck sand loading	Engine standby	94	43	20	-41	-2	-5	0	3	50	For worst case 30 minutes scenario, SB3, SB4 &SB5 have selected for assessment.
SB4		Truck idling + conveyor load sand into truck	103	43	9	-41	-5	-5	-10	3	45	aced have solected for assessment.
SB5		Relax conveyor + leave	102	43	1	-41	-15	-5	0	3	45	
		·			2	P	redicted (Overall Noise	Level, Leq	(A)db(a)	54	

Case 3 Peng Chau Kaito, Mui Wo Kaito & LPG Container Vessel + LPG Containers Loading Truck

Noise Source ID	Description	A.Ab.Ab E I A	SWL,	Shortest	Worst operating	1. 1	C	orrection, di	3(A)		Predicted	Remark
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	20	1	-34	-15	-8	0	3	34	
PC2	Peng Chau Kaito	Idling	88	20	5	-34	-8	-8	0	3	41	
PC3		Idlling - ready for departure	91	20	1	-34	-15	-8	0	3	37	
MW1		Idlling - arrival	98	20	1	-34	-15	-8	0	3	44	
MW2	Mui Wo Kaito	Idling	90	20	5	-34	-8	-8	0	· 3	43	
MW3		Idlling - ready for departure	98	20	1	-34	-15	-8	0	3	44	
LPG1		Idlling - arrival	93	43	2	-41	-12	-5	0	3	39	
LPG2		Crane operation and LPG containers leave barge	112	43	1	-41	-15	-5	-10	3	45	
LPG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	43	1	-41	-15	-5	0	3	38	
LPG4	Loading Truck	Idlling	91	43	5	-41	-8	-5	0	3	41	
LPG5		Crane operation and LPG containers back to barge	108	43	1	-41	-15	-5	-10	3	. 41	
LPG6		Idlling - ready for departure	105	43	2	-41	-12	-5	0	3	51	

Predicted Overall Noise Level, Leq (30min)dB(A) 54

Daytime criterion (ANL-5), dB(A) 55

Exceedance, dB(A) -

Daytime criterion (ANL-5), dB(A)

Exceedance, dB(A)

1

(a)

Discovery Bay EAS

235928 Job No.:

Fixed Noise Assessment Title:

Calculation of SPL at Receivers (Nighttime) Subtitle:

NSR ID: N10b-B1

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest	Worst operating	1	Co	orrection, di	3(A)	- 188	Predicted	
NOISE COURCE ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Nelliak
PC1		Idlling - arrival	88	20	1	-34	-15	-8	0	3	34	
PC2	Peng Chau Kaito	Idling	88	20	3	-34	-10	-8	0	3	39	
PC3		Idlling - ready for departure	91	20	1	-34	-15	-8	0	3	37	
MW1		Idlling - arrival	- 1	-	-	•	-	-	-	-	-	No Nighttime operation
MW2	Mui Wo Kaito	Idling		-	-	-		-	- 1		-	No Nighttime operation
MW3		Idlling - ready for departure	- 1	-	-	-	-	-	- 1		-	No Nighttime operation
TB1		Idling for arrival		-	-	-	-	-	- 1	-	-	
TB2		Off the landing board	- 1	•	-	-	-	-	-	-	-	
TB3	Tug Boat + Barge	Lorries leave barge			-	-	-	-	-	-	-	No Nighttime operation
TB4	i ug boat + barge	Lorries back to barge		-	-		-	-	-	-	•	No Nightline operation
TB5		Lift on the landing board	- 1	-	-	-	-	-	-		-	
TB6		Idling for departure	- 1	-	-	-	-	-	-	-		
						Pi			Level, Leq riterion (AN Exceeda		45	

Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading Case 2

Noise Source ID	Description		SWL,	Shortest	Worst operating		C	orrection, dE	B(A)		Predicted	Remark
TOISE SOUTCE ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1	•	Idlling - arrival	88	20	1	-34	-15	-8	. 0	3	34	
PC2	Peng Chau Kaito	Idling	88	- 20	5	-34	-8	-8	0	3	41	
PC3		Idlling - ready for departure	. 91	20	1	-34	-15	-8	0	3	37	
MW1		Idlling - arrival	98	-	. 1	-	-	1 -	-	-	- 1	No Nighttime operation
MW2	Mui Wo Kaito	Idling	90	-	5	•	-	-	- "	-	· 1	No Nighttime operation
MW3		Idlling - ready for departure	98	-	1	-		1 -	-	-	<u> </u>	No Nighttime operation
SB1		Idling	101	-	1	•	-	-	-	•	·	
SB2		Extend Conveyor belt	99	-	1	-		-	-	-	-	
SB3	Sand Barge + Truck sand loading	Engine standby	94	-	20	-		-	-	-	-	No Nightlime operation
SB4		Truck idling + conveyor load sand into truck	103	-	9	-	•	-	-	-	-	
SB5		Relax conveyor + leave	102	-	1	-	-	-	-	-	-	
						P.	nedicted O	verali Noise	Level Len	dR(A)	43	

Nighttime criterion (ANL-5), dB(A) Exceedance, dB(A)

Peng Chau Kaito, Mui Wo Kaito & LPG Container Vessel + LPG Containers Loading Truck Case 3

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest separation	Worst operating	286	C	orrection, di	3(A)		Predicted	Remark
Moise Source ID	Description	Activites/Equipment	dB(A)	distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	20	1	-34	-15	-8	0	3	34	
PC2	Peng Chau Kaito	Idling	88	20	5	-34	-8	-8	0	3	41	•
PC3		Idlling - ready for departure	91	20	1	-34	-15	-8	0	3	37	
MW1		Idlling - arrival	98	-	1	-	-	1 -		-	T - 1	No Nighttime operation
MW2	Mui Wo Kaito	Idling	90	-	5	-	-	-	-	-	-	No Nighttime operation
мW3		Idlling - ready for departure	98	-	1	-	-	-	-	, -	-	No Nighttime operation
LPG1		ldlling - arrival	93	-	2	-	-	-	-	•	-	
LPG2		Crane operation and LPG containers leave barge	112	-	1	-	-	-	- 1	-		
LPG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	-	1	-	•	† -	-	-	-	No Nighttime operation
LPG4	Loading Truck	Idlling	91	-	5	-	-	-	•	-	- 1	110 Highlithe operation
LPG5		Crane operation and LPG containers back to barge	108	-	1	-	-	1 -	-	-		
LPG6		Idlling - ready for departure	105	-	2	-	-	 			-	

Predicted Overall Noise Level, Leq (Month)dB(A) Nighttime criterion (ANL-5), dB(A) Exceedance, dB(A)

Discovery Bay EAS

Job No.:

Fixed Noise Assessment

235928 Title:

Calculation of SPL at Receivers (Daytime) Subtitle:

N10b-B2 NSR ID:

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest separation	Worst operating		C	orrection, di	3(A)		Predicted	
itoise cource is	Description	Activites/Cyapinetic	dB(A)	distance (m)	time (mln)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	25	1	-36	-15	-10	0	3	30	1
PC2	Peng Chau Kaito	Idling	 88	25	5	-36	-8	-10	. 0	3	37	
PC3		Idlling - ready for departure	91	25	1	-36	-15	-10	0	3	33	
MW1		Idiling - arrival	98	25	1	-36	-15	-10	0	3	40	
MW2	Mui Wo Kaito	Idling	90	25	5	-36	-8	-10	. 0	3	39	
MW3		Idlling - ready for departure	98	25	1	-36	-15	-10	0	3	40	
TB1		Idling for arrival	 99	61	10	-44	-5	-5	0	3	49	
TB2		Off the landing board	 100	50	1	-42	-15	-5	0	3	41	
TB3	Tue Beat & Barre	Lorries leave barge	 100	54	5	-43	-8	-5	0	3	48.	For worst case 30 minutes scenario, TB1, TB2 &
TB4	Tug Boat + Barge	Lorries back to barge	 100	50	5	-42	-8	-5	0	3	-	TB3 have selected for assessment.
TB5		Lift on the landing board	98	50	1	-42	-15	-5	0	3	-	
TB6		Idling for departure	 99	61	5	-44	-8	-5	0	3		
			 			Р	redicted C	Overall Noise	Level, Leq	(30min)dB(A)	53	
								Daytime c	riterion (AN	L-5), dB(A)	55	

Exceedance, dB(A)

Exceedance, dB(A)

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest separation	Worst operating	A Committee	C	orrection, di	B(A)	46 4.36	Predicted	
Noise Source to	Description	Activities/Equipment	dB(A)	distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	25	1	-36	-15	-10	0	3	30	
PC2	Peng Chau Kaito	Idling	88	25	5	-36	-8	-10	0	3	37	
PC3		Idlling - ready for departure -	91	25	1	-36	-15	-10	0	3	33	
MW1		Idlling - arrival	98	25	1	-36	-15	-10	0	3	40	
MW2	Mui Wo Kaito	Idling	90	25	5	-36	-8	-10	0	3	39	
MW3		Idlling - ready for departure	98	25	1	-36	-15	-10	0	3	40	
SB1		Idling	101	50	1	-42	-15	-5	0	3	-	
SB2		Extend Conveyor belt	99	50	1	-42	-15	-5	0	3	-	
SB3	Sand Barge + Truck sand loading	Engine standby	94	50	20	-42	-2	-5	0	3	48	For worst case 30 minutes scenario, SB3, SB4 &SB5 have selected for assessment.
SB4		Truck idling + conveyor load sand into truck	103	50	9	-42	-5	-5	-10	3	44	GODO NAVO SCICORSO IOI BOSESSIIIBIR.
SB5		Relax conveyor + leave	102	50	1	-42	-15	-5	0	3	43	
						P	redicted (Overali Noise	Level, Leq	_(30min) dB(A)	52	
								Daudima e	ritarion (AN	I KI ADIAI	55	

	* * _ * _ * _ * _ * _ * _ * _ * _ *		SWL,	Shortest	Worst operating		Co	orrection, dB	(A)	46.6	Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	25 25 25 25 25 25 25 25 25 25 25 25 25 2	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	25	1	-36	-15	-10	0	3	30	
PC2	Peng Chau Kaito	Idling	88	25	5	-36	-8	-10	0	3	37	
PC3		Idlling - ready for departure	91	25	1	-36	-15	-10	0	3	33	
MW1		Idlling - arrival	98	25	1	-36	-15	-10	0	3	40	
MW2	Mui Wo Kaito	Idling	90	25	5	-36	· -8	-10	0	· 3	39	
MW3		Idlling - ready for departure	98	25	1	-36	-15	-10	0	3	40	
LPG1		Idlling - arrival	93	50	2	-42	-12	-5	0	3	37	
PG2		Crane operation and LPG containers leave barge	112	50	1	-42	ુ-15 -	-5	-10	3	43	
PG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	50	1	-42	-15	-5	0	3	36	
_PG4	Loading Truck	Idlling	91	50	5	-42	-8	-5	0	3	39	
-PG5		Crane operation and LPG containers back to barge	108	50	1 10/37	-42	-15	-5	-10	3	39	
LPG6		Idlling - ready for departure	105	50	2	-42	-12	-5	: 0	3	49	
			<u>-</u>	1		P	redicted C	verall Noise	8995 : JOSEPH 965 606		1	
								Daytime c	riterion (AN	L-5), dB(A)	55	
							•		Exceeds	ince, dB(A)	1 -	

Discovery Bay EAS

235928 ob No.:

Fixed Noise Assessment

itle: ubtitle: Calculation of SPL at Receivers (Nighttime)

SR ID: N10b-B2

Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

oise Source ID	Description	Activities/Equipment	SWL,	Shortest	Worst operating		C	orrection, d	B(A)	- 3	Predicted	
Olse Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
C1		Idlling - arrival	88	25	1	-36	-15	-10	0	3	30	
C2	Peng Chau Kaito	Idling	88	. 25	3	-36	-10	-10	0	3	35	
C3		Idlling - ready for departure	91	25	1	-36	-15	-10	0	3	33	
IW1		Idlling - arrival	- I	-	•	-	-	-	-	•	-	No Nighttime operation
W2	Mui Wo Kaito	Idling		-	-	- 1	-	-		-	-	No Nighttime operation
W3		Idlling - ready for departure	-	-			-	·	T -	-	-	No Nighttime operation
B1		Idling for arrival	-	-	-	- 1	-	· -	-	-	- 1	
B2		Off the landing board		-	-	- 1	•	-	-	-		
В3	Tug Boat + Barge	Lorries leave barge		-	-	- 1	-	-	1 ·	-	-	At-All-Lag
B4	rug boar + barge	Lorries back to barge		-	-	- 1	-		T -	•	-	No Nighttime operation
85		Lift on the landing board	-	-	-		-	-		-	-	
86		Idling for departure		-	• .	- 1		-	-	•	-	
						P	redicted C	verall Noise	Level, Leq	_(36min) dB(A)	38	
Nightlime criter					riterion (AN	L-5), dB(A)	45					

Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading ase 2

oise Source ID	Description	A-41-241	SWL,	Shortest	Worst operating	-	C	orrection, de	3(A)		Predicted	
orse source in	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
C1		Idlling - arrival	88	25	1	-36	-15	-10	0	3	30	
02	Peng Chau Kaito	Idling	88	25	5	-36	-8	-10	0	3	37	
23		Idlling - ready for departure	91	25	1	-36	-15	-10	0	3	33	
W1		Idlling - arrival	98		1	- 1	-	T -	- 1	-	-	No Nighttime operation
W2	Mui Wo Kaito	Idling	90		5	- 1	-	T	-		-	No Nighttime operation
W3		Idlling - ready for departure	98		1	· -	-	·	- 1	-	-	No Nighttime operation
31		Idling	101	-	1		-	-	- 1	-	-	
32		Extend Conveyor belt	99	-	1	- 7	-	1	- 1	-		
33	Sand Barge + Truck sand loading	Engine standby	94	-	20		-	-	- 1	-	T	No Nighttime operation
34		Truck idling + conveyor load sand into truck	103	-	9		-	T -	- 1	-	- 1	
35		Relax conveyor + leave	102	-	1	-	-	-	-	-	-	
						Pi	redicted (Overall Noise	Level, Leq	(A)Bb _(nim)	39	
					Nighttime criterion (ANL-5), dB(A)						45	

Peng Chau Kaito, Mui Wo Kaito & LPG Container Vessel + LPG Containers Loading Truck ase 3

Possibile n	A strain or a stra	SWL,	Shortest	Worst operating		C	orrection, dB	(A)		Predicted	Remark
Description	Activities/Equipment	dB(A)	distance (m)			Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
	Idlling - arrival	88	25	1	-36	-15	-10	0	3	30	
Peng Chau Kaito	Idling	88	25	5	-36	-8	-10	0	3	37	
	Idlling - ready for departure	91	25	1	-36	-15	-10	0	3	33	
	Idlling - arrival	98	-	1	-	-		- 1	-	-	No Nighttime operation
Mui Wo Kaito	Idling	90	-	5	-	-	-	- 1	-		No Nighttime operation
	Idlling - ready for departure	98	-	1	- 1	-			-	-	No Nighttime operation
	Idlling - arrival	93	-	2	- 1	-	1	- 1	-	-	
	Crane operation and LPG containers leave barge	112	-	1	-	-	-		-		
LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	-	1		-	1 - 1	- 1		-	No Michaeles acception
Loading Truck		91	-	5	- 1	-	1 - 1			-	No Nighttime operation
	Crane operation and LPG containers back to barge	108		1		-	 			-	
		105	-	2	- 1	-	+		-	-	
	Peng Chau Kaito Mui Wo Kaito LPG Container Vessel + LPG Containers Loading Truck	Peng Chau Kaito Idling - arrival Idling - ready for departure Idling - arrival Idling - ready for departure Idling - arrival Crane operation and LPG containers leave barge LPG container Vessel + LPG Containers Loading Truck Idling Crane operation and LPG containers back to barge	Activities/Equipment dB(A)	Description	Description	Description	Description	Description	Description Activities/Equipment SVI_1 dB(A) Separation distance (m) time (min) Distance Time Screening Mitigation	Description Activities/Equipment SWI, dB(A) Separation distance (m) time (mln) Distance Time Screening Mitigation Facade	Description

Nighttime criterion (ANL-5), dB(A)

Exceedance, dB(A)

Discovery Bay EAS

Job No.:

235928

Title: Fixed Noise Assessment Calculation of SPL at Receivers (Daytime)

Subtitle:

NSR ID:

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

Noise Source ID	Description	A	SWL,	Shortest	Worst operating		C	orrection, di	B(A)		Predicted	
Hoise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	40	1	-40	-15	-10	0	3	26	
PC2	Peng Chau Kaito	Idling	88	40	5	-40	-8	-10	0	3	33	
PC3		Idlling - ready for departure	91	40	1	-40	-15	-10	. 0	3	29	
MW1		Idlling - arrival	98	40	1	-40	-15	-10	0	3	36	
MW2	Mui Wo Kaito	Idling	90	40	5	-40	-8	-10	0	3	35	
MW3		Idlling - ready for departure	98	40	1	-40	-15	-10	0	3	36	
TB1		Idling for arrival	99	75	10	-46	-5	0	0	3	52	
TB2		Off the landing board	100	66	1 -	-44	-15	-10	0	3	34	
TB3	Tug Boat + Barge	Lorries leave barge	100	69	5	-45	-8	0	0	3	50	For worst case 30 minutes scenario, TB1, TB2 &
TB4	i ug boat + barge	Lorries back to barge	100	66	5	-44	-8	0	0	3	-	TB3 have selected for assessment.
TB5	•	Lift on the landing board	98	66	1	-44	-15	-10	0	3	-	
TB6		Idling for departure	99	75	5	-46	-8	0	0	3	· -	
						Р	redicted (Overall Noise			1	
						Daytime criterion (ANL-5), dB(. Exceedance, dB(.			ALEMEN S	1		

Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading Case 2

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest	Worst operating		C	orrection, di	3(A)		Predicted	
Moise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	40	1	-40	-15	-10	0	3	26	
PC2	Peng Chau Kaito	Idling	88	40	5	-40	-8	-10	0	3	33	
PC3		Idlling - ready for departure-	91	40	1	-40	-15	-10	0	3	29	
MW1		Idlling - arrival	98	40	1	-40	-15	-10	0	3	36	
MW2	Mui Wo Kaito	Idling	90	40	5	-40	-8	-10	0	3	35	
MW3		Idlling - ready for departure	98	40	1	-40	-15	-10	0	3	36	
SB1		Idling	101	66	1	-44	-15	-5	0	3	- 1	
SB2		Extend Conveyor belt	99	66	1	-44	-15	-5	0	3	- 1	
SB3	Sand Barge + Truck sand loading	Engine standby	94	66	20	-44	-2	-5	0	3	46	For worst case 30 minutes scenario, SB3, SB4 &SB5 have selected for assessment.
SB4	·	Truck idling + conveyor load sand into truck	103	66	9	-44	-5	-5	-10	3	41	assertate colocide to assertation.
SB5	 {	Relax conveyor + leave	102	66	1	-44	-15	-5	0	3	41	
						Pı	redicted (Overall Noise	Level, Leq	_{30min} dB(A)	49	

Daytime criterion (ANL-5), dB(A)

Exceedance, dB(A)

Exceedance, dB(A)

Noise Source ID			SWL,	Shortest	Worst operating	1000	C	orrection, di	B(A)		Predicted	Remark
Aoise Sorice ID	Description	Activities/Equipment	dB(A)	separation distance (m)	September 1 March 1996 Teles	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Kemark
² C1		Idlling - arrival	88	40	1	-40	-15	-10	0	3	26	
°C2	Peng Chau Kaito	Idling	88	40	5	-40	-8	-10	0	3.	33	·
C3		Idlling - ready for departure	91	40	1	-40	-15	-10	0	3	29	
/W1		Idlling - arrival	98	40	1	-40	-15	-10	0	3	36	
AW2	Mui Wo Kaito	Idling	90	40	5	-40	-8	-10	0	· 3	35	
AW3		Idlling - ready for departure	98	40	1	-40	-15	-10	0	3	36	
.PG1		Idiling - arrival	93	66	2	-44	-12	-10	0	3	30	
PG2		Crane operation and LPG containers leave barge	112	66	1	-44	-15	-5	-10	3	41	
PG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	66	1	-44	-15	-10	0	3	29	
PG4	Loading Truck	Idlling	91	66	5	-44	-8	-10	0	3	32	
PG5		Crane operation and LPG containers back to barge	108	66	1	. -44	-15		-10	3	37	
PG6	,	Idlling - ready for departure	105	67	2 : 22 :	-45	-12	-10	: 0	3	42	
		,		·		Pi	redicted (Overall Noise			l ·	
								Daytime c	riterion (AN	L-5), dB(A)	55	

roject : Discovery Bay EAS

ob No.: 235928

itle: Fixed Noise Assessment

ubtitle: Calculation of SPL at Receivers (Nighttime)

SR ID: N10b-B4

ase 1 Peng Chau Kaito, Mul Wo Kaito & Tug Boat with Barge

oise Source ID	Description	Activities/Equipment	SWL,	Shortest separation	Worst operating		Co	orrection, di	B(A)		Predicted	Remark
Olse Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Kemark
C1		Idlling - arrival	88	40	1	-40	-15	-10	0	3 .	26	
C2	Peng Chau Kaito	Idling	88	40	3	-40	-10	-10	0	3	31	
C3		Idlling - ready for departure	91	40	1	-40	-15	-10	0	3 -	29	
IW1		Idlling - arrival	-	-	-	-	-	-	•	-	- 1	No Nighttime operation
IW2	Mui Wo Kaito	Idling	-	-	-	-	-	-	-	-	- 1	No Nighttime operation
IW3		Idiling - ready for departure	-	•	-	-		1 -	-			No Nighttime operation
B1		Idling for arrival	-	-	-	-	-	-	-	-	-	
B2		Off the landing board	-	-	-	•	-	-	-	-	-	
В3	Tug Boat + Barge	Lorries leave barge	-		-	-	- ·-	-	-	-	-	No Allahatian annatian
B4	rug boat + barge	Lorries back to barge	-	•	-	-	-	-	•	-	-	No Nighttime operation
B5		Lift on the landing board	•		-	•	-	-	-	·	-	
B6		Idling for departure	-	-	-	-	-	i -	-	-	-	
				-		P	redicted O	verall Noise	Level, Leq	_(30min) dB(A)	34	
	*							Nighttime c	riterion (AN	L-5), dB(A)	45	
									Exceeda	nce, dB(A)	1 •	

Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

oise Source ID	Description	Activities/Equipment	SWL,	Shortest	Worst operating		C	orrection, di	B(A)	1000	Predicted	Remark
	Description	Activities/Edinbitalit	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Reflark
C1		Idlling - arrival	88	40	.1	-40	-15	-10	0	3	26	
C2	Peng Chau Kaito	Idling	88	40	5	-40	-8	-10	0	3	33	
C3		Idlling - ready for departure	91	40	1	-40	-15	-10	0	3	29	
IW1		Idlling - arrival	98	-	1	-	•	-	-	-	- 1	No Nighttime operation
IW2	Mui Wo Kaito	Idling	90	-	5	-	-	-	- 1	-	-	No Nighttime operation
IW3		Idlling - ready for departure	98	-	1	-	-	-	-	-	-	No Nighttime operation
B1		Idling	101	•	1	-	*	-	- 1	-	- '	
B2		Extend Conveyor belt	99	-	1	-	-	-	-	-	-	
B3	Sand Barge + Truck sand loading	Engine standby	94	-	20	-	-	1 -	-	-	-	No Nighttime operation
-B4	•	Truck idling + conveyor load sand into truck	103	<u> </u>	9	•	-	†	-	-	i - 1	
B5		Relax conveyor + leave	102	-	1	-	-	† -	-	-	T	
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		<u> </u>	3 30			Werall Noise	land lan	HD/A)	35	

45

Nighttime criterion (ANL-5), dB(A)

Exceedance, dB(A)

loise Source ID	Description	Activities/Equipment	SWL,	Shortest	Worst operating	1,000	C	orrection, dE	3(A)	1.00	Predicted	D	
	Pescription	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark	
'C1		Idlling - arrival	88	40	1	-40	-15	-10	0	3	26		
² C2	Peng Chau Kaito	Idling	88	40	5	-40	-8	-10	0	3	33		
'C3		Idlling - ready for departure	91	40	1	-40	-15	-10	0	3	29		
1W1		Idlling - arrival	98	-	1	-	-	-		-	-	No Nighttime operati	ion
1W2	Mui Wo Kaito	Idling	90	-	5	-	-	-		-	•	No Nighttime operati	ion
1W3		Idlling - ready for departure	98	-	1	-	-	-	-	-	-	No Nighttime operati	ion
PG1		Idlling - arrival	93	-	2	-	-		-	-	- 1		
PG2		Crane operation and LPG containers leave barge	112	-	1		-	-	-	-	-		
PG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	•	1	-	-	<u> </u>	•	_	-		
.PG4	Loading Truck	Idlling	91	-	5	-		-	-	-	-	No Nighttime operati	ion
PG5		Crane operation and LPG containers back to barge	108	•	1	-	-	-	- 1	-	-		
PG6		Idlling - ready for departure	105	-	2			-	-				
	Predicted Overall Noise Level, Leq _{(somin})dB(A) Nighttime criterion (ANL-5), dB(A)												

Discovery Bay EAS

Job No.: 235928

Title: Fixed Noise Assessment

Subtitle: Calculation of SPL at Receivers (Daytime)

NSR ID: N10b-B

Case 1 Peng Chau Kaito, Mul Wo Kaito & Tug Boat with Barge

Noise Source	Description	Activities/Equipment	SWL,	Shortest separation	Worst operating		Co	orrection, di	B(A)		Predicted	
ID	Description	Activities/Equipment	dB(A)	distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	49	1	-42	-15	0	0	3	34	
PC2	Peng Chau Kaito	Idling	88	49	5	-42	-8	0	0	3	41	
PC3		Idlling - ready for departure	91	49	1	-42	-15	0	0	3	37	
MW1		Idlling - arrival	98	49	1	-42	-15	0	0	3	44	
MW2	Mui Wo Kaito	Idling	90	49	5	-42	-8	0	0	3	43	
MW3		Idlling - ready for departure	98	49	· 1	-42	-15	0	0	3	44	
TB1		Idling for arrival	99	83	10	-46	-5	0	0	3	51	
TB2		Off the landing board	100	75	1	-46	-15	-10	0	3	33	
ТВ3	Tun Back t Backs	Lorries leave barge	100	77	5	-46	-8	0	0	3	49	For worst case 30 minutes scenario, TB1, TB2 &
TB4	Tug Boat + Barge	Lorries back to barge	100	75	5	-46	-8	0	0	3	-	TB3 have selected for assessment.
TB5		Lift on the landing board	98	75	1	-46	-15	-10	0	- 3	- 1	
TB6		Idling for departure	99	83	5	-46	-8	0	0	3	-	
					Wasana and a second	Pi	redicted O	verali Noise	Level, Leq	_(20min) dB(A)	55	
								Daytime o	riterion (AN	L-5), dB(A)	55	
									Exceeda	nce, dB(A)	•	

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

Noise Source	f		SWL,	Shortest	Worst operating		C	orrection, di	B(A)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Predicted	
ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		ldlling - arrival	88	49	1	-42	-15	0	0	3	34	
PC2	Peng Chau Kaito	Idling	88	49	5	-42	-8	0	0	3	41	
PC3		Idlling - ready for departure	91	49	1	-42	-15	0	0	3	37	
MW1		Idlling - arrival	98 -	49 -	1	-42	-15	0	0	3	44	-
MW2	Mui Wo Kaito	ldling	90	49	5	-42	-8	0	0	3	43	
MW3		Idlling - ready for departure	98	49	1	-42	-15	0	0	3	44	
SB1		ldling	101	75	1	-46	-15	-5	0	3		
S82		Extend Conveyor belt	99	75	1	-46	-15	-5	0	3		
SB3	Sand Barge + Truck sand loading	Engine standby	94	75	20	-46	-2	-5	0	3	45	For worst case 30 minutes scenario, SB3, SB4 &SB5 have selected for assessment.
SB4		Truck idling + conveyor load sand into truck	103	75	9	-46	-5	-5	-10	3	40	
SB5		Relax conveyor + leave	102	75	1	-46	-15	-5	0	3	40	
			···			Pi	redicted C	verali Noise	Level, Leq	_{30mln)} dB(A)	52	
					Daytime criterion (ANL-5), dB(5), dB(A)	55			
									Evcenda	nce. dB/A)	1 . 1	

Case 3 Peng Chau Kaito, Mui Wo Kaito & LPG Container Vessel + LPG Containers Loading Truck

Noise Source		the second secon	SWL,	Shortest	Worst operating		C	orrection, di	B(A)		Predicted	Domest.
ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (mln)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
C1		ldlling - arrival	88	49	1	-42	-15	0	0	3	34	
C2	Peng Chau Kaito	Idling	88	49	5	-42	-8	0	0	3	41	
23		Idlling - ready for departure	91	49	1	-42	-15	0	0	3	37	
W1		Idlling - arrival	98	49	1	-42	-15	0	0	3	44	
W2	Mui Wo Kaito	Idling	90	49	5	-42	-8	0	0	3	43	
W3		idlling - ready for departure	98	49	1	-42	-15	0	0	3	44	
PG1		Idlling - arrival	93	75	2	-46	-12	-5	0	3	34	
G2		Crane operation and LPG containers leave barge	112	75	1	-46	-15	-5	-10	3	40	_
PG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	75	1	-46	-15	-5	0	3	33	
G4	Loading Truck	Idlling	91	75	5	-46	-8	-5	0	3	36	
G5		Crane operation and LPG containers back to barge	108	75	1 66	-46	-15	-5	-10	3	36	
°G6		Idlling - ready for departure	105	75	2 40000	-46	-12	-5	0	3	46	
	<u> </u>	I				A. W. P.	edicted O	verall Noise	Level, Leg	and dB(A)	52	

Predicted Overall Noise Level, Leq (30min)dB(A) 52

Daytime criterion (ANL-5), dB(A) 55

Exceedance, dB(A)

6

Project : Discovery Bay EAS

Job No.: 235928

Title: Fixed Noise Assessment

Subtitle: Calculation of SPL at Receivers (Nighttime)

NSR ID: N10b-B

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest	Worst operating		C	orrection, di	B(A)		Predicted	Remark
0.50 050100 15		Activities/Edubitent	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	49	1	-42	-15	0	0	3	34	
PC2	Peng Chau Kaito	Idling	88	49	3	-42	-10	0	0	3	39	
PC3		Idlling - ready for departure	91	49	1.	-42	-15	0	0	3	37	
1W1		Idlling - arrival	-	-	†	-	-	<u> </u>	-	-	1	No Nighttime operation
1W2	Mui Wo Kaito	Idling	-	-	· -	-	-	 	-	•	- 1	No Nighttime operation
/W3		Idlling - ready for departure	-	-	-		-	 	-	-	T - 1	No Nighttime operation
B1		Idling for arrival	-	-	-	. 1	-	 		-	- 1	
B2		Off the landing board	-	-	-	· 1	-	· ·	· -	•		•
В3	Tug Boat + Barge	Lorries leave barge	-		- -	- 1	-	 	-	-		No Allahillara ayan da a
B4	rug boat + barge	Lorries back to barge	- -	-		- 1	-	1	-	-		No Nighttime operation
B5		Lift on the landing board	-	-	†		•	1 -			-	
B6		Idling for departure		-	-	- 1	-	-	-	-	-	
Predicted Overall Noise Level, Leq (xmh)dB(A)								42				

Predicted Overall Noise Level, Leq (MmhydB(A) 42

Nighttime criterion (ANL-5), dB(A) 45

Exceedance, dB(A)

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

Noise Source ID	Description	Activities/Equipment	SWL	Shortest	Worst operating		C	o rre ction, de	B(A)		Predicted	Remark
		Activities/Eddibitient	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Nomark
PC1		Idlling - arrival	88	49	1	-42	-15	0	0	3	34	
PC2	Peng Chau Kaito	Idling	88	49	5	-42	-8	0	0	3	41	
PC3		Idlling - ready for departure ,	91	49	1	-42	-15	0	0	3	37	
MW1		Idlling - arrival	98	-	1	-	-	† <u> </u>	•	•	· -	No Nighttime operation
MW2	Mui Wo Kaito	Idling	90	-	5	- T	-	-		-	· 1	No Nighttime operation
мwз		Idlling - ready for departure	98	-	1	-	-	1 -		-	· 1	No Nighttime operation
SB1		Idling	101	-	1	-	-	·	-	-	· 1	
SB2		Extend Conveyor belt	99	-	1	-		1 -	-	•		
SB3	Sand Barge + Truck sand loading	Engine standby	94		20		-	-	-	-		No Nighttime operation
SB4		Truck idling + conveyor load sand into truck	103	-	9	- 1	-	· ·	-	-		
SB5		Relax conveyor + leave	102		1		•	-	-	-	-	
				·		P	redicted C	Overall Noise	Level, Leq	(30min)dB(A)	43	
								Nighttime c	riterion (AN	L-5), dB(A)	45	

Case 3 Peng Chau Kaito, Mul Wo Kaito & LPG Container Vessel + LPG Containers Loading Truck

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest	Worst operating	1 372	C	orrection, d	B(A)	\$ \$	Predicted	Remark
NOISE GOULGE ID	Pescription	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Kallidik
PC1		Idlling - arrival	88	49	1	-42	-15	0	0	3	34	
C2	Peng Chau Kaito	Idling	88	49	5	-42	-8	0	0	3	41	
°C3		Idlling - ready for departure	91	49	1	-42	-15	0	0	3	37	
/W1		Idlling - arrival	98	-	1	-	-	-				No Nighttime operation
1W2	Mui Wo Kaito	Idling	90	-	5	-	-	-	1 -	-:	-	No Nighttime operation
AW3	_	Idlling - ready for departure	98	-	1		-	-	-		1 - 1	No Nighttime operation
PG1		Idlling - arrival	93	-	2		-	 -	1 - 1		T	
.PG2		Crane operation and LPG containers leave barge	112	-	1	-	-	 -	· -	-		
PG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	-	1			 -	-	-	-	N. Alish Missa acception
PG4	Loading Truck Idli Cr	Idlling	91	-	5	-		-	1 . 1	-	-	No Nighttime operation
PG5		Crane operation and LPG containers back to barge	108	-	1	-		1 -	-	-		
PG6		Idlling - ready for departure	105		2	-	-	 	 - 	-		
		····				- P	redicted (Overall Noise	Level, Leq	manin dB(A)	43	

Predicted Overall Noise Leve), Leq (30min)dB(A) 43

Nighttime criterion (ANL-5), dB(A) 45

Exceedance, dB(A) -

Discovery Bay EAS

Job No.: 235928

Title: Fixed Noise Assessment

Subtitle: Calculation of SPL at Receivers (Daytime)

NSR ID: N10b-B8

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest	Worst operating	CONTRACTOR OF THE PROPERTY OF	C	orrection, di	B(A)		Predicted		
Moise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark	
PC1		Idlling - arrival	88	. 72	1	-45	-15	0	0	3	31.		
PC2	Peng Chau Kaito	Idling	88	72	5	-45	-8	0	0	3	38		
PC3		Idlling - ready for departure	91	72	1	-45	-15	0	0	3	34	`	
MW1		Idlling - arrival	98	72	1	-45	-15	0	0	3	41		
MW2	Mui Wo Kaito	Idling	90	72	5	-45	-8	0	0	3	40		
MW3		Idlling - ready for departure	98	72	. 1	-45	-15	0	0	3	41		
TB1		Idling for arrival	99	103	10	-48	-5	0	0	3	49		
TB2		Off the landing board	100	. 97	1	-48	-15	0	0	3	40		
твз	Turn Donk I. Donne	Lorries leave barge	100	99	5	-48	-8	0	0	3	47	For worst case 30 minutes scenario, TE	31, TB2 &
TB4	Tug Boat + Barge	Lorries back to barge	100	97	5	-48	-8	0	0	3	-	TB3 have selected for assessme	
TB5		Lift on the landing board	98	97	1	-48	-15	0	0	. 3	-		
TB6		Idling for departure	99	103	5	-48	-8	0	0	3	-	•	
						P	redicted C	verall Noise	Level, Leq	(A)Bb _(nimot)	53		
								Daytime o	riterion (AN	L-5), dB(A)	55		
					1.45				Exceeda	nce, dB(A)	•		

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest separation	Worst operating		C	orrection, di	3(A)	- 3	Predicted	Remark	
Hoise Source ID	Description	Activities/Equipment	dB(A)	distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark	
PC1		Idlling - arrival	88	72	1	-45	-15	0	0	3	31		
PC2	Peng Chau Kaito	Idling	88	72	5	-45	-8	0	0	3	38		
PC3		Idlling - ready for departure .	91	72	1	-45	-15	0	0	3	34		
MW1		Idlling - arrival	98	72	1	-45	-15	0	0	3	41		
MW2	Mui Wo Kaito	Idling	90	72	5	-45	-8	0	0	3	40		
MW3		Idlling - ready for departure	98	72	1	-45	-15	0	0	3	41		
SB1		Idling	101	97	1	-48	-15	-5	0	3	-		
SB2		Extend Conveyor belt	99	97	1	-48	-15	-5	0	3	-		
SB3	Sand Barge + Truck sand loading	Engine standby	94	97	20	-48	-2	-5	0	3	43	For worst case 30 minutes scen &SB5 have selected for as:	
SB4		Truck idling + conveyor load sand into truck	103	97	9	-48	-5	-5	-10	3	38	dobo nave selected (o) as-	3633110111.
SB5		Relax conveyor + leave	102	97	1	-48	-15	-5	0	3	37		
						Pı	edicted C	Verail Noise	Level, Leq	(A)Bb _(nim0t)	49		
		•						Daytime c	riterion (AN	L-5), dB(A)	55		

Exceedance, dB(A)

V-1 0			SWL,	Shortest	Worst operating		C	orrection, de	3(A)		Predicted	S	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark	
PC1		Idlling - arrival	88	72	1 :	-45	-15	0	0	3	31		
PC2	Peng Chau Kaito	Idling	88	72	5	-45	-8	0	0	3	38	 	•
PC3		Idlling - ready for departure	91	72	1	-45	-15		0	3	34		
MW1		Idlling - arrival	98	72	1	-45	15	0	0	3	41	 	
MW2	Mui Wo Kaito	Idling	90	72	5	-45	-8	0	0	· 3	40		
MW3		Idlling - ready for departure	98	72	1	-45	-15	0	0	3	41		:
LPG1		Idlling - arrival	93	97	2	-48	-12	-5	0	3	32		
LPG2		Crane operation and LPG containers leave barge	112	97	1	-48	-15	-5	-10	3	37		
LPG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	97	1	-48	-15	⊹.5	0	3	30		
PG4	Loading Truck	Idlling	91	97	5	-48	-8	-5	0	3	- 33	 	
PG5		Crane operation and LPG containers back to barge	108	97	1 40:	-48	-15	-5	-10	3	33		
LPG6		Idiling - ready for departure	105	97	2	-48	-12	5	∜.0	3	44	 	
					10000000	P	redicted C	100 A	Level, Leq	MICH SHIP STONE SHIP IN		 	
								Daytime c	riterion (ANI	L-5), dB(A)	55		
									Exceeda	nce, dB(A)	\ . \		

Discovery Bay EAS

Job No.: 235928

Title: Fixed Noise Assessment

Subtitle: Calculation of SPL at Receivers (Nighttime)

NSR ID: N10b-B8

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest separation	Worst operating	100000	C	orrection, di	3(A)		Predicted	
Moise Source ID	Description	Activities/Equipment	dB(A)	distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	72	1	-45	-15	0	0	3	31	
PC2	Peng Chau Kaito	Idling	88	72	3	-45	-10	0	0	3	36	
PC3		Idlling - ready for departure	91	72	1	-45	-15	0	0	3	34	
MW1		Idlling - arrival	-	-	-	-	-	T -		•	-	No Nighttime operation
MW2	Mui Wo Kaito	Idling	-	-	-	-	-	T -	•	-	-	No Nighttime operation
мwз		Idlling - ready for departure	-	-	-	-	•	-	-		-	No Nighttime operation
TB1		Idling for arrival	-	-	-	-		T -	-	-	-	
TB2		Off the landing board		-	-	-	-	-	-	-	- 7	
ТВЗ	Tug Boat + Barge	Lorries leave barge	-	-	-	-	-	-	- 1	-	-	Mr. Maker
TB4	lug Boat + Barge	Lorries back to barge		-		-	-	-	-	-		No Nighttime operation
TB5		Lift on the landing board	-	-	-	-	-	-	-	-	· 1	
TB6		Idling for departure	-	-	-	-	-	•	-	-	-	
						P	redicted C	verall Noise	Level, Leq	(30min)dB(A)	39	

Predicted Overall Noise Level, Leq (35min)dB(A) 39

Nighttime criterion (ANL-5), dB(A) 45

Exceedance, dB(A) -

Case 2 Peng Chau Kaito, Mul Wo Kaito & Sand Barge + Truck sand loading

Noise Source ID	Description		SWL,	Shortest	Worst operating		C	orrection, di	3(A)	Section 1	Predicted	
Koise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (mln)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	72	1	-45	-15	0	0	3	31	
PC2	Peng Chau Kaito	Idling	88	72	5	-45	-8	0	0	3	38	
PC3		Idlling - ready for departure	91	72	1	-45	-15	0	0	3	34	
MW1		Idiling - arrival	98	-	1	·	-	-	-	-	-	No Nighttime operation
MW2	Mui Wo Kaito	Idling	90		5	-	-	T -	-	-	-	No Nighttime operation
MW3		Idiling - ready for departure	98	-	1	-	-	-	-	-	-	No Nighttime operation
SB1		Idling	101	-	1	-	-	-	-	-	-	
SB2		Extend Conveyor belt	99	-	1	- 1	-	Ţ -	-	-	-	
SB3	Sand Barge + Truck sand loading	Engine standby	94	-	20	-	-		· -	-	•	No Nighttime operation
SB4		Truck idling + conveyor load sand into truck	103	-	9	-	-	1	-	-	-	
SB5		Relax conveyor + leave	102	-	1		•	-	-	-	-	
						P	redicted C	verall Noise	Level, Leq	_(30min) dB(A)	40	
								Nighttime c	riterion (AN	1.5) dR/A	45	

Case 3 Peng Chau Kaito, Mul Wo Kaito & LPG Container Vessel + LPG Containers Loading Truck

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest	Worst operating	200	C	orrection, di	B(A)	il dire	Predicted	Remark
ivoise Source ib	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	remark
PC1		Idlling - arrival	88	72	1	-45	-15	. 0	0	3	31	
PC2	Peng Chau Kaito	Idling	88	72	5	-45	-8	0	0	3	38	
PC3		Idlling - ready for departure	91	72	1	-45	-15	0	0	3	34	
MW1		Idlling - arrival	98		1	- 1	-	-	-	-	-	No Nighttime operation
MW2	Mui Wo Kaito	Idling '	90		5	-		-	-			No Nighttime operation
MW3	·	Idlling - ready for departure	98	-	1	- 1	-	-		-	-	No Nighttime operation
LPG1		Idlling - arrival	93	•	2	- 1			-	-	- 1	
LPG2		Crane operation and LPG containers leave barge	112	-	1	- 1		1 -	-	-	-	
LPG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	-	1	- 1	-	† 		-	-	Ma All-Lallers are colling
LPG4	Loading Truck	Idlling	91	-	5	- 1	-	† •		-	1	No Nighttime operation
LPG5		Crane operation and LPG containers back to barge	108	-	1		-	 	-	-	† - -	
LPG6		Idlling - ready for departure	105	-	2	-		1	-	-		·
						P	redicted (Overall Noise	Level, Lea	(Month)dB(A)	40	

edicted Overall Noise Level, Leq (somin)dB(A) 40
Nighttime criterion (ANL-5), dB(A) 45

Exceedance, dB(A) -

Exceedance, dB(A)

Discovery Bay EAS

Job No.: 235928

Title: Fixed Noise Assessment

Subtitle: Calculation of SPL at Receivers (Daytime)

NSR ID: N10b-D1

Case 1 Peng Chau Kaito, Mul Wo Kaito & Tug Boat with Barge

Noise Source ID		Activities/Equipment	SWL,	Shortest	Worst operating		C	orrection, di	B(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	76	1	-46	-15	0	0	3	31	
PC2	Peng Chau Kaito	Idling	88	76	5	-46	-8	0	0	3	38	
PC3		Idlling - ready for departure	91	76	1	-46	-15	0	0	3	34	
MW1		Idlling - arrival	98	76	1	-46	-15	0	0	3	41	
MW2	Mui Wo Kaito	Idling	90	76	5	-46	-8	0	0	3	40	
MW3		Idlling - ready for departure	98	76	1	-46	-15	0	0	3	41	
TB1		Idling for arrival	99	79	10	-46	-5	0	0	3	51	
TB2		Off the landing board	100	58	1	-43	-15	0	. 0	3	45	
TB3	Tue Deat I Dane	Lorries leave barge	100	68	5	-45	-8	0	0	. 3	51	For worst case 30 minutes scenario, TB1, TB2 &
TB4	Tug Boat + Barge	Lorries back to barge	100	58	5	-43	-8	0	0	3	· ·	TB3 have selected for assessment.
TB5		Lift on the landing board	98	58	1	-43	-15	0	0	3	-	
TB6		Idling for departure	99	79	5	-46	-8	0	0	3	-	
						P	redicted (Level, Leg			
					Daytime criterion (ANL-5), dB(/							
									Exceeds	ince, dB(A)	i - I	

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest	Worst operating		C	orrection, di	3(A)		Predicted	Remark
Noise Cource (D	Pescripuor	Acuthesic quipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	76	1	-46	-15	0	0	3	31	
PC2	Peng Chau Kaito	Idling	88	76	5	-46	-8	0	0	3	38	
PC3		Idlling - ready for departure	91	76	1	-46	-15	0	0	3	34	
MW1		Idlling - arrival	98	76	1	-46	-15	0	0	3	41	
MW2	Mui Wo Kaito	Idling	90	76	5	-46	-8	0	0	3	40	
MW3		Idlling - ready for departure	98	76	1	-46	-15	0	0	3	41	
SB1		Idling	101	58	1	-43	-15	0	0	3	- 1	
SB2		Extend Conveyor belt	99	58	1	-43	-15	0	0	3		
SB3	Sand Barge + Truck sand loading	Engine standby	94	58	20	-43	-2	0	0	3	52	For worst case 30 minutes scenario, SB3, SB4 &SB5 have selected for assessment.
SB4		Truck idling + conveyor load sand into truck	103	58	9	-43	-5	0	-10	3	48	GODS have selected for assessment.
SB5		Relax conveyor + leave	102	58	1	-43	-15	0	0	3	47	
				<u> </u>		Pi	redicted C	Overall Noise	Level, Leq	30mk)dB(A)	55	
					Daytime criterion (ANL-5), dB(A)					55		

Case 3 Peng Chau Kaito, Mul Wo Kaito & LPG Container Vessel + LPG Containers Loading Truck

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest	Worst operating		C	orrection, di	B(A)		Predicted	
Aoise Source ID	Pescription	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	76	1	-46	-15	0	0	3	31	
PC2	Peng Chau Kaito	Idling	88	76	5	-46	-8	0	0	3	38	
PC3		Idiling - ready for departure	91	76	1	-46	-15	0 -	0	3	34	
MW1		Idlling - arrival	98	76	1	-46	-15	0	0	3	41	
MW2	Mui Wo Kaito	Idling	90	76	5	-46	-8	0	0 .	3	40	
иW3		Idlling - ready for departure	98	76	1	-46	-15	0	0	3	41	:
.PG1		Idlling - arrival	93	58	2	-43	-12	0	0	3	41	
PG2		Crane operation and LPG containers leave barge	112	58	1	-43	-15	0	-10	3	47	
.PG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	58	1	-43	-15	0	0	3	40	
PG4	Loading Truck	Idlling	91	58	5	-43	-8	0	0	3	43	
PG5		Crane operation and LPG containers back to barge	108	58	1	-43	-15	0	-10	3	43	
.PG6		Idlling - ready for departure	105	58	2	-43	-12	0	0	3	53	
				L		P	redicted C	verall Noise	Level, Leq	_{30min)} dB(A)	55	
								Daytime c	riterion (AN	L-5), dB(A)	55	
									Exceeda	nce, dB(A)	•	

(2)

Discovery Bay EAS

Job No.:

. 200020

Title: Fixed Noise Assessment
Subtitle: Calculation of SPL at Receivers (Nighttime)

NSR ID: N10b-

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

sengiserki projekt		Activities/Equipment	SWL,	Shortest	Worst operating	. 8	C	orrection, d	B(A)	\$ 233	Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	76	1	-46	-15	0	0	3	31	
PC2	Peng Chau Kaito	Idling	88	76	3	-46	10	0	0	3	35	
PC3		Idlling - ready for departure	91	76	1	-46	-15	0	0	3	34	
MW1		Idiling - arrival		-	-	-	-	-	-		-	No Nighttime operation
MW2	Mui Wo Kaito	Idling	T -	-	-	-		1		-		No Nighttime operation
MW3		Idlling - ready for departure	·	-	-	-	-		- 1	_	1	No Nighttime operation
TB1	·	Idling for arrival	7		-	-	•				-	
TB2		Off the landing board		-	-	-	•	-	- 1		•	
TB3	. Tug Boat + Barge	Lorries leave barge	-	-	-	-	•	· .	-	-	•	No Michiller - consider
TB4	rug Boat + Barge	Lorries back to barge	- -	-	-	-	•	1	-	-		No Nighttime operation
TB5		Lift on the landing board	-	-	-	•	•	T -	- 1	-	-	
TB6		Idling for departure	1	-	-		-	T -	- 1	-	-	
				<u> </u>	Predicted Overall Noise Level, Leg (Mmh)dB(A							

Case 2 Peng Chau Kaito, Mul Wo Kaito & Sand Barge + Truck sand loading

Noise Source ID	B	A-Abdata a Touris	SWL	Shortest	Worst operating	. 35	Co	orrection, d	B(A)		Predicted	
Moise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	76	1	-46	-15	0	0	3	31	
PC2	Peng Chau Kaito	Idling	88	76	5	-46	-8	0	0	3	38	
PC3		Idlling - ready for departure	91	76	1	-46	-15	0	0	3	34	
MW1		Idlling - arrival	98		1	-	-	-	-			No Nighttime operation
MW2	Mui Wo Kaito	Idling	90	-	5	-	-	-	-			No Nighttime operation
MW3		Idlling - ready for departure	98	-	1	-	-	-	•	-	1	No Nighttime operation
SB1		Idling	101	-	1		-	-	-	-	1	
SB2		Extend Conveyor belt	99	-	. 1		-	•	-	· ·	-	
SB3	Sand Barge + Truck sand loading	Engine standby	94	-	20		-	-	·		-	No Nighttime operation
SB4		Truck idling + conveyor load sand into truck	103		9		-	-	· ·	-	1	
SB5		Relax conveyor + leave	102	-	1	-	-	1		-	-	
<u> </u>			<u> </u>			P			Level, Leq	SHARE S	40	

Exceedance, dB(A)

Exceedance, dB(A)

loise Source ID	Description	Activities/Equipment	SWL,	Shortest	Worst operating		C	orrection, di	B(A)		Predicted	
toise source in	Description	Activites/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
°C1		Idlling - arrival	88	76	1	-46 .	-15	0	0	3	31	
C2	Peng Chau Kaito	Idling	88	76	5	-46	-8	0	0	3	38	
C3		Idlling - ready for departure	91	76	1	-46	-15	0	0	3	34	
IW1		Idlling - arrival	98	-	1	- 1	-	·	· -	-		No Nighttime operation
W2	Mui Wo Kaito	Idling	90	-	5	-	-	T -		-	T - 1	No Nighttime operation
IW3		Idlling - ready for departure	98		1	-	-	-	·	-	- 1	No Nighttime operation
PG1		Idlling - arrival	93	· ·	2	· 1		-	· -	-	<u> </u>	
PG2		Crane operation and LPG containers leave barge	112	-	1	- 1	-	1 -	-	-		
PG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	-	1	-	-	<u> </u>	-	-	-	
PG4	Loading Truck	ldlling	91	-	5		-	-	-	-	T1	No Nighttime operation
PG5		Crane operation and LPG containers back to barge	108	-	1		-	 -	-	-		
PG6		Idlling - ready for departure	105	-	2	-	-	T -	-	-		emperation
ь			1.45			P	redicted C	verall Noise	Level, Leq	(30min)dB(A)	40	
							Nighttime o	riterion (AN	L-5), dB(A)	45		

Project : Discovery Bay EAS

Job No.: 235928

Title: Fixed Noise Assessment

Subtitle: Calculation of SPL at Receivers (Daytime)

NSR ID: N10b-D5

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

Noise Source	Description	Activities/Equipment	SWL,	Shortest	Worst operating		C	orrection, d	B(A)		Predicted	
ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	. Remark
PC1		Idlling - arrival	88	110	1	-49	-15	0	0	3	27	
PC2	Peng Chau Kaito	Idling	88	110	5	-49	-8	0	0	3	34	
PC3		Idlling - ready for departure	91	110	1	-49	-15	0	0	3	30	-
MW1		Idlling - arrival	98	110	1	-49	-15	0	0	3	37	
MW2	Mui Wo Kaito	Idling	90	110	5	-49	-8	0	0	3	36	
мwз		Idlling - ready for departure	98	110	1	-49	-15	0	0	3	37	
TB1		Idling for arrival	99	136	10	-51	-5	0	0	3	47	
TB2		Off the landing board	100	111	1	-49	-15	0	0	3	39	-
ТВ3	Tug Boat + Barge	Lorries leave barge	100	123	5	-50	-8	0	0	3	45	For worst case 30 minutes scenario, TB1, TB2 &
TB4	rug boat + barge	Lorries back to barge	100	111	5	-49	-8	0	0	3	-	TB3 have selected for assessment.
TB5		Lift on the landing board	98	111	1	-49	-15	0	0	3	·	
TB6		Idling for departure	99	136	5	-51	-8	0	0	3		
						Pi	edicted O	verall Noise	Level, Leq	(30min)dB(A	50	
					Daytime criterion (ANL-5), dB(L-5), dB(A)	55		
									Exceeda	nce, dB(A)	.	

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

Noise Source	Description	Activities/Equipment	SWL,	Shortest	Worst operating		C	orrection, di	3(A)	Predicted SPL, dB(A) 3 27 3 34 3 30 3 37 3 36 3 37 3 36 3 37 3 37 3 36 3 37 5 3 37 6 3 3 7 5 5 7 8 7 8 7 8 7 8 7 8 8 8 8 8 8 8 8	Remark	
ID	Description	Activines Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	110	1	-49	-15	.0	0	3	27	
PC2	Peng Chau Kaito	Idling	88	110	5	-49	-8	0	0	3	34	
PC3		Idlling - ready for departure	91	110	1	-49	-15	0	0	3	30	
MW1		Idlling - arrival	98	110	1	-49	-15	0	0	3	37	
MW2	Mui Wo Kaito	ldling	90	110	5	-49	-8	0	0	3	36	
MW3		Idlling - ready for departure	98	110	1	-49	-15	0	0	3	. 37	
SB1		ldling	101	111	1	-49	-15	0	0	3	- 1	
SB2		Extend Conveyor belt	99	111	1	-49	-15	0	0	3	-	
SB3	Sand Barge + Truck sand loading	Engine standby	94	111	20	-49	-2	0	0	3	46	For worst case 30 minutes scenario, SB3, SB4 &SB5 have selected for assessment.
SB4	· •	Truck idling + conveyor load sand into truck	103	111	9	-49	-5	0	-10	3	42	account to assessment.
SB5		Relax conveyor + leave	102	111	1	-49	-15	0	0	3	41	
			·		19 15 15 15 15 15 15 15 15 15 15 15 15 15	P	redicted C	verall Noise	Level, Leq	(somin)dB(A)	50	

Predicted Overall Noise Level, Leq (strain)dB(A) 50

Daytime criterion (ANL-5), dB(A) 55

Exceedance, dB(A) -

Daytime criterion (ANL-5), dB(A)

Exceedance, dB(A)

Case 3 Peng Chau Kaito, Mui Wo Kaito & LPG Container Vessel + LPG Containers Loading Truck

Noise Source	5- 1-0	Ashir le 1	SWL,	Shortest	Worst operating		C-	orrection, di	3(A)		Predicted	
ID .	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	110	1	-49	-15	0	0	3	27	
PC2	Peng Chau Kaito	Idling	88	110	5 .	-49	-8	0	0	3	34	
PC3	1	Idlling - ready for departure	91	110	1	-49	-15	0	0	3	30	
MW1		Idlling - arrival	98	110	1	-49	-15	0	0	3	37	
MW2	Mui Wo Kaito	Idling	90	110	5	-49	-8	0	0	.3	36	
MW3]	Idlling - ready for departure	98	110	1	-49	-15	0	0	3	37	:
LPG1		Idlling - arrival	93	111	2	-49	-12	0	0	3	35	
LPG2	1	Crane operation and LPG containers leave barge	112	111	1	-49	-15	0	-10	3	41	
LPG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	111	1	-49	-15	0	0	3	34	
.PG4	Loading Truck	Idlling	91	111	5	-49	-8	0	0	3	37	
-PG5	1	Crane operation and LPG containers back to barge	108	111	1	-49	-15	0	-10	3	37	
PG6	1	Idlling - ready for departure	105	111	2	-49	-12	0	0	3	47	
	1					Pr	edicted C	verall Noise	Level, Leq	Manual A	50	

Discovery Bay EAS

Job No.: 235928

Title: Fixed Noise Assessment

Subtitle: Calculation of SPL at Receivers (Nighttime)

NSR (D: N10b-D5

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

Noise Source ID	Description	Activities/Equipment	SWL,	Shortest separation	Worst operating		Co	rrection, dE			Predicted	Remark
(toise cource in	Description	Activities/Edithine	dB(A)	distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Kellar
PC1		Idlling - arrival	88	110	1	-49	-15	0	0	3	27	
PC2	Peng Chau Kaito	Idling	88	110	3	-49	-10	0	0	3	32	
PC3		Idlling - ready for departure	91	110	1	-49	-15	0	0	3	30	
MW1		Idlling - arrival	-	-	-	- 1		-	-	-	11	No Nighttime operation
MW2	Mui Wo Kaito	Idling	-	-	-		-	-	-		-	No Nighttime operation
MW3		Idlling - ready for departure	-	-	-			-	-		- 1	No Nighttime operation
TB1		Idling for arrival	-	-	-	- 1		T -	-		- 1	
TB2		Off the landing board		-		-	-	-	-	-	•	
твз	Tug Boat + Barge	Lorries leave barge	-	-	-	-	-	-	-	-	- 1	Al- All-Edder and and the
ТВ4	rug boat + barge	Lorries back to barge	-	-		- 1	•	-	- 1	-	-	No Nighttime operation
TB5		Lift on the landing board		-		-	-	-		-	- 1	
TB6		Idling for departure	-		-		-	-	-	• .	- 1	
						P	redicted O	verall Noise	Level, Leq	(A)Bb _(Mmos)	35	
								Nighttime c	riterion (ANI	L-5), dB(A)	45	
									Exceeda	nce, dB(A)	•	

Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

Voise Source ID	Description	Activities/Equipment	SWL,	Shortest	Worst operating		C	orrection, d	** ** ** *** *************************	8	Predicted	
Total Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	110	1	-49	-15	0	0	3	27	
°C2	Peng Chau Kaito	Idling	. 88	110	5	-49	-8	0	0	3	34	
,C3		Idlling - ready for departure	91	110	1	-49	-15	0	0	3	30	
AW1		Idlling - arrival	98	-	1	- 1		1 -		-		No Nighttime operation
/W2	Mui Wo Kaito	Idling	90	-	5	-		1 :		-	-	No Nighttime operation
1W3		Idlling - ready for departure	98		1	-		1 -	-	-		No Nighttime operation
iB1		Idling	101	-	1	- 1		1 -	-	-	-	
B2		Extend Conveyor belt	99	-	1	-		T	-			•
·B3	Sand Barge + Truck sand loading	Engine standby	94	•	20			 	- 1	-		No Nighttime operation
B4		Truck idling + conveyor load sand into truck	103	-	9			 	-	-	- 1	
B5		Relax conveyor + leave	102	-	1			-	-			
						Pı	redicted (Overall Noise	Level, Leq	(A)Bb _(nim)C)	36	
								Nighttime c	riterion (AN	L-5), dB(A)	45	

Exceedance, dB(A)

Pena Chau Kaita, Mui Wa Kaita & LPG Container Vessal + LPG Container Leading Truck

oise Source ID	Description	Activities/Equipment	SWL,	Shortest separation	Worst operating		С	orrection, di	3(A)		Predicted	Remark
Jist Oval Ce ID	Description	- Activities/Edublient	dB(A)	distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Kemaik
31		Idlling - arrival	88	110	1	-49	-15	0	0	3	27	
52	Peng Chau Kaito	Idling	88	110	5	-49	-8	0	0	3	34	
23		Idlling - ready for departure	91	110	1	-49	-15	0	0	3	30	
W1		Idlling - arrival	98	 	1		-	† ·		-		No Nighttime operation
N2	Mui Wo Kaito	Idling	90	-	5	•	-	 	-	-	-	No Nighttime operation
N3		Idiling - ready for departure	98		1		-	 	-		-	No Nighttime operation
'G1		Idlling - arrival	93		2	- 1	-	 	-	-	-	
G2		Crane operation and LPG containers leave barge	112		1		-	 -	-		-	
G3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95		1		-	 	- 1	-	-	At APPARA
G4	Loading Truck	Idlling	91		5	- 1	-	† -	-	-		No Nighttime operation
G5		Crane operation and LPG containers back to barge	108		1	-	-	-	-		-	
G6		Idlling - ready for departure	105		2				-			
				•		Pr		Overall Noise			F I	

Discovery Bay EAS

Job No.: 235928

Title:

Fixed Noise Assessment Subtitle: Calculation of SPL at Receivers (Daytime)

NSR ID: N10b-D6

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

Ag. 14			SWL,	Shortest	Worst operating	90/2007	C	orrection, dE	(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)		Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	82	1	-46	-15	0	. 0	3	. 30	
PC2	Peng Chau Kaito	Idling	88	82	5	-46	-8	0	_ 0	3	37	
PC3		Idlling - ready for departure	91	82	1	-46	-15	0	0	3	33	
MW1		Idlling - arrival	98	82	1	-46	-15	0	0	3	40	
MW2	Mui Wo Kaito	Idling	90	82	5	-46	-8	0	0	3	39	
MW3		Idlling - ready for departure	98	82	1	-46	-15	0	0	3	40	
TB1		Idling for arrival	99	114	10	-49	-5	0	0	3	48	
TB2		Off the landing board	100	92	1	-47	-15	0	0	3	41	
ТВ3	.	Lorries leave barge	100	102	5	-48	-8	0	0	3	47	For worst case 30 minutes scenario, TB1, TB2 &
TB4	Tug Boat + Barge	Lorries back to barge	100	92	5	-47	-8	0	0	3	-	TB3 have selected for assessment.
TB5		Lift on the landing board	98	92	1	-47	-15	0	0	3	-	
TB6		Idling for departure	99	114	5	-49	-8	0	0	3	-	
						Pr	edicted C	verall Noise	Level, Leq	_{30min)} dB(A)	52	
						Daytime criterion (ANL-5), de				L-5), dB(A)	55	

Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading Case 2

			SWL,	Shortest	Worst operating		C	orrection, di	3(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	82	1	-46	-15	0	0	3	30	
PC2	Peng Chau Kaito	Idling	88	82	5	-46	-8	0	0	3	37	
PC3		Idlling - ready for departure	91	82	1	-46	-15	0	0	3	33	
MW1		Idlling - arrival	98	82	1	-46	-15	0	0	3	40	
MW2	Mui Wo Kaito	Idling	90	82	5	-46	-8	0	0	3	39	
MW3		Idlling - ready for departure	98	82	1	-46	-15	0	0	3	40	
SB1		Idling	101	92	1	-47	-15	0	0	3	-	
SB2		Extend Conveyor belt	99	92	1	-47	-15	0	0	3	-	
SB3	Sand Barge + Truck sand loading	Engine standby	94	92	20	-47	-2	0	0	3	48	For worst case 30 minutes scenario, SB3, SB4 &SB5 have selected for assessment.
SB4		Truck idling + conveyor load sand into truck	103	92	9	-47	-5	0	-10	3	43	GODO HAVE SELECTED TO ASSESSITIONS.
SB5		Relax conveyor + leave	102	92	1	-47	-15	0	0	3	43	
					7. / 3. / 11 15	Pı	redicted O	verall Noise	Level, Leq	_{30min)} dB(A)	51	
								Daytime c	riterion (ANI	L-5), dB(A)	55	
				Exceedance, dB(A)					-			

Case 3 Peng Chau Kaito, Mui Wo Kaito & LPG Container Vessel + LPG Containers Loading Truck

			SWL,	Shortest	Worst operating		C C	orrection, dE	(A)		Predicted		
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	· 186 美国 中国 大学路域中心 : -	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark	
PC1		Idlling - arrival	88	82	1	-46	-15	0	0	3	30	•	
PC2	Peng Chau Kaito	Idling	88	82	5	-46	-8	0	0	3	37		
PC3]	Idlling - ready for departure	91	82	1	-46	-15	0	0	3	33		
MW1		Idlling - arrival	98	82	1	-46	-15	0 -	a	3	40		
MW2	Mui Wo Kaito	Idling	90	82	5	-46	9	0	0	3	39		
MW3		Idlling - ready for departure	98	82	1	-46	-15	0	0	3	40		
LPG1		Idlling - arrival	93	92	2	-47	-12	0	0	3	37		
LPG2		Crane operation and LPG containers leave barge	112	92	1 .:	-47	-15	0	-10	3	43		
LPG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	92	1 1000	-47	-15	0	0	3	36		
LPG4	Loading Truck	Idlling	91	92	5 - 1991	-47	-8	0	0	3	39		
LPG5		Crane operation and LPG containers back to barge	108	92	1 🦸	-47	-15	0	-10	3	39		
LPG6		Idlling - ready for departure	105	92	2	-47	-12	0	0	3	49		
						P	redicted (Overall Noise	Level, Leg	30min)dB(A)	52		

Daytime criterion (ANL-5), dB(A) 55 Exceedance, dB(A)

Subtitle:

Discovery Bay EAS

Job No.: 235928

Title: Fixed Noise Assessment

Calculation of SPL at Receivers (Nighttime)

NSR ID: N10b-D6

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

			SWL,	Shortest	Worst operating		C	orrection, dE	B(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	82	1	-46	-15	0	0	3	30	
PC2	Peng Chau Kaito	Idling	88	82	5	-46	-8	0	0	3	37	
PC3		Idlling - ready for departure	91	82	1	-46	-15	0	0	3	33	
MW1		Idlling - arrival	98	•	1		•	-	-	-	•	
MW2	Mui Wo Kaito	Idling	90	-	5	•	-	-	-	-	-	
MW3		Idlling - ready for departure	98	-	1	-	•	-		-	-	
TB1		Idling for arrival	99	-	10	-	-	-	-	-	-	
TB2		Off the landing board	100	-	1	-	-	-	-	-	-	
твз	Tue Book Book	Lorries leave barge	100	-	5	-	-	-	•	-	-	For worst case 30 minutes scenario, TB1, TB2 &
TB4	Tug Boat + Barge	Lorries back to barge	100	-	5	-		-	•	-	-	TB3 have selected for assessment,
TB5		Lift on the landing board	98	-	1	- 1	-	-	-	-	-	
TB6		Idling for departure	99	-	5	- 1	-	-		-	-	
						Pi		Overall Noise Nighttime c		40 10 The Property Co.	88	
									Exceeda	nce, dB(A) -	

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

		waysperson	SWL,	Shortest	Worst operating		C	orrection, dB	(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	9 (858) (PROMINE	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	82	. 1	-46	-15	0	0	3	30	
PC2	Peng Chau Kaito	Idling	88	82	5	-46	-8	0	0	3	37	
PC3		Idlling - ready for departure	91	. 82	1	-46	-15	0	0	3	33	
MW1		Idlling - arrival	98	-	1	-	-	-	•	-		
MW2	Mui Wo Kaito	Idling	90	-	5	- 1	-	-	-	-	•	
MW3		Idlling - ready for departure	98	-	1	-	-	-	- ,	-	-	
SB1		Idling	101	-	1	-	-	-	-	-	-	
SB2		Extend Conveyor belt	99	-	1	-	•		•	•	-	
SB3	Sand Barge + Truck sand loading	Engine standby	94	-	20	-	-	-	-	-	-	No Nighttime operation
SB4		Truck idling + conveyor load sand into truck	103	-	9	-	-	-	-	-	-	
SB5		Relax conveyor + leave	102	-	1	-	*	-		-	•	
						Pi		verali Noise Nighttime c	riterion (AN		45	

			SWL,	Shortest	Worst operating		C	orrection, dE	(A)		Predicted	
olse Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	- 14 (14 (14 (14 (14 (14 (14 (14 (14 (14	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
°C1		Idlling - arrival	88	82	1	-46	-15	0	0	3	30	
°C2	Peng Chau Kaito	Idling	88	82	5	-46	-8	0	0	3	37	
°C3		Idlling - ready for departure	91	82	1	-46	-15	0	· 0	3	33	
/W1		Idlling - arrival	98	-	1	-		-	-	-	-	
MW2	Mui Wo Kaito	Idling	90	-	5	-	-	-	-	-	-	
1W3		Idlling - ready for departure	98	-	1	-	-	-	•	•	-	
PG1		Idlling - arrival	93		2	-	-	-	-	-	-	
PG2		Crane operation and LPG containers leave barge	112	-	1	-	-	-	•	-		
.PG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	-	1		•	-	-	-		No Nighttime operation
PG4	Loading Truck	Idlling	91		5		-	-	-	-	-	110 mgmanio operation
PG5		Crane operation and LPG containers back to barge	108	-	1	-	-	-	•	-	•	;
.PG6		Idlling - ready for departure	105	-	2	-	-	1 -	-	-	-]	
	Predicted Overall Noise Level, Leq _(Somin) dB(A Nighttime criterion (ANL-5), dB(A Exceedance, dB(A									L-5), dB(A)	45	

Discovery Bay EAS

Job No.:

235928

Title: Fixed Noise Assessment

Subtitle: Ca

Calculation of SPL at Receivers (Daytime)

NSR ID: N10b-D8

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

			SWL,	Shortest	Worst operating	100	C	orrection, dE	3(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	70	1	-45	-15	0	0	3	31	
PC2	Peng Chau Kaito	Idling	88	70	5	-45	-8	0	0	3	38	
PC3		Idlling - ready for departure	91	70	1	-45	-15	0	0	3	34	
MW1		Idlling - arrival	98	70	1	-45	-15	0	0	3	41	
MW2	Mui Wo Kaito	Idling	90	70	5	-45	-8	0	0	3	40	
MW3		Idlling - ready for departure	98	70	1	-45	-15	0	0	3	41	
TB1		Idling for arrival	99	106	10	-49	-5	0	0	3	49	
TB2		Off the landing board	100	90	1	-47	-15	0	0	3	41	
твз	Tug Boat + Barge	Lorries leave barge	100	97	5	-48	-8	0	0	3	47	For worst case 30 minutes scenario, TB1, TB2 &
TB4	lug boat + barge	Lorries back to barge	100	90	5	-47	-8	0	0	3	-	TB3 have selected for assessment.
TB5		Lift on the landing board	98	90	1	-47	-15	0	0	3	•	
TB6		Idling for departure	99	106	5	-49	-8	0	0	3	-	
						P	redicted C	Overali Noise Daytime c	riterion (AN		55	

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

			SWL,	Shortest	Worst operating	White of	C	orrection, di	3(A)		Predicted	
Noice Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade		Remark
PC1		Idlling - arrival	88	70	1	-45	-15	0	0	3	31	
PC2	Peng Chau Kaito	Idling	88	70	5	-45	-8	0	0	3	38	
PC3		Idlling - ready for departure	91	70	1	-45	-15	0	0	3	34	
MW1		Idlling - arrival	98	70	1	-45	-15	0	0	3	41	
MW2	Mui Wo Kaito	Idling	90	70	5	-45	-8	0	0	3	40	
MW3		Idlling - ready for departure	98	70	1	-45	-15	0	0	3	41	
SB1		Idling	101	90	1	-47	-15	0	0	3	- 1	
SB2		Extend Conveyor belt	99	90	1	-47	-15	0	0	3	· - 1	
SB3	Sand Barge + Truck sand loading	Engine standby	94	90	20	-47	-2	0	0	3	48	For worst case 30 minutes scenario, SB3, SB4 &SB5 have selected for assessment.
SB4		Truck idling + conveyor load sand into truck	103	90	9	-47	-5	0	-10	3	44	aces have coloured for accomment.
SB5		Relax conveyor + leave	102	90	1	-47	-15	0	0	3	43	
						Pı	redicted O	verall Noise	Level, Leq	(30min)dB(A)	52	
					400			Daytime c	riterion (AN	L-5), dB(A)	55	
									Exceeda	ince, dB(A)) - }	

Case 3 Peng Chau Kaito, Mui Wo Kaito & LPG Container Vessel + LPG Containers Loading Truck

			SWL,	Shortest	Worst operating		C	orrection, dB	(A)		Predicted	
loise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)		Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
C1		ldlling - arrival	88	70	1	-45	-15	0	0	3	31	
G2	Peng Chau Kaito	Idling	88	70	5	-45	-8	0	0	3	38	
C3		Idlling - ready for departure	91	70	1	-45	-15	0	0	3	34	
W1		Idlling - arrival	98	70	1	-45	-15	0	0	3	41	
W2	Mui Wo Kaito	ldling	90	70	5	-45	-8	0	0	3	40	
W3	,	Idlling - ready for departure	98	70	1	-45	-15	0	0	3	41	
² G1	<u> </u>	Idlling - arrival	93	90	2	-47	-12	0	0	3	37	
G2		Crane operation and LPG containers leave barge	112	90	1	-47	-15	0	-10	3	43	
G3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	90	1	-47	<i>-</i> 15	0	0	3	36	
PG4	Loading Truck	Idlling	91	90	5	-47	-8	0	0	3	39	
PG5		Crane operation and LPG containers back to barge	108	90	1	-47	-15	0	-10	3	39	
G6		Idlling - ready for departure	105	90	2 33933	-47	-12	0	0	3	49	
						P	redicted C	Verall Noise	Level, Leq	_{30min)} dB(A)	52	
					Daytime criterion (ANL-5), dB(A					55		

Exceedance, dB(A)

'roject:

Discovery Bay EAS

lob No.:

235928

Fixed Noise Assessment

abtitle: Calculation of SPL at Receivers (Nighttime)

ISR ID: N10b-D8

Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

			SWL,	Shortest	Worst operating		C	orrection, dE	(A)		Predicted	
loise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
¹C1		Idlling - arrival	88	70	1	-45	-15	0	0	3	31	
'C2	Peng Chau Kaito	Idling	88	70	5	-45	-8	0	0	3	38	
C3		Idlling - ready for departure	91	70	1	-45	-15	0	0	3	34	
IW1		Idlling - arrival	98	-	1	-	-	-	-	-	· ·	
IW2	Mui Wo Kaito	Idling	90	-	5	-	•	-	-	-		
IW3		Idlling - ready for departure	98	-	1	-	-	-	-	-		
B1		Idling for arrival	99	-	. 10		-	1 -	-	-	-	
B2		Off the landing board	100		1		•	-	-	-	-	
В3	Tue Book / Bonco	Lorries leave barge	100		5	-	•	-	-	-	-	For worst case 30 minutes scenario, TB1, TB2 &
84	Tug Boat + Barge	Lorries back to barge	100	•	5	-	•	-	-	-	-	TB3 have selected for assessment.
B5		Lift on the landing board	98		1	-	-	-	-	-	-	·
B6		Idling for departure	99	-	5	-	-	-	-	-	•	
						P	redicted O	verall Noise	Level, Leq	(30mln)dB(A)	40	
								Nighttime c	riterion (AN	L-5), dB(A)	45	
									Exceeda	nce, dB(A)	ni - 1	

ase 2 Peng Chau Kaito, Mul Wo Kaito & Sand Barge + Truck sand loading •

7 5 6 6 6			SWL,	Shortest	Worst operating	1000	C	orrection, di	3(A)		Predicted	
olse Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
:1		Idlling - arrival	88	70	1	-45	-15	0	0	3	31	
2	Peng Chau Kaito	Idling	88	70	5	-45	-8	0	0	3	38	
3		Idlling - ready for departure	91	70	1	-45	-15	0	0	3	34	
V1		Idlling - arrival	98	-, -	. 1	-	-	· ·	· ·	-	- 1	
/2	Mui Wo Kaito	Idling	90	-	5	-	-	T	•		-	
V3		Idlling - ready for departure	98	-	1	-	-	-	-	•	-	
1		Idling	101	-	1	-	-	-	-	-	-	
2		Extend Conveyor belt	99	-	1	-	-	1	-	•		
3	Sand Barge + Truck sand loading	Engine standby	94	-	20	-	-	-	- 1		- 1	No Nighttime operation
4		Truck idling + conveyor load sand into truck	103	-	9	-	-	-			· -	
5		Relax conveyor + leave	102	-	1	-		1	1 -	-	-	
						P	redicted C	Verall Noise	Level, Leq	_{30min)} dB(A)	40	
			-					Nighttime o	riterion (AN	L-5), dB(A)	45	

			SWL,	Shortest	Worst operating	3	C	orrection, di	B(A)		Predicted	
ise Source ID	Description	Activitles/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
:1		Idlling - arrival	88	70	1	-45	-15	0	0	3	31	
2	Peng Chau Kaito	Idling	88	70	5	-45	-8	0	0	3	38	
:3		Idlling - ready for departure	91	70	1	-45	-15	0	0	3	34	
V1		Idlling - arrival	98	-	1	-	-	1 -		· ·		
V2	Mui Wo Kaito	Idling	90	-	5	-	-	-	-	-	·	:
V3		Idlling - ready for departure	98	-	1	-	-	-	-	-	-	
G1		Idlling - arrival	·93	-	2	-	-	T -	·	-	·	
G2		Crane operation and LPG containers leave barge	112	-	1	•	-	•	-	-		
G3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	-	1		-	-		-	1	No Niekwiere on oroline
G4	Loading Truck	Idlling	91		5	-	-	-	-	· ·	-	No Nighttime operation
G5		Crane operation and LPG containers back to barge	108	-	1		-	T	· -	-		
36		Idlling - ready for departure	105		2		-	T -	·	-	T - 1	
						P	redicted C	verall Noise	Level, Leq	(30min)dB(A	40	
								Nighttime o	riterion (AN	L-5), dB(A)	45	
									Exceeda	nce, dB(A))[- [

Discovery Bay EAS

Job No.:

Title: Fixed Noise Assessment Subtitle: Calculation of SPL at Receivers (Daytime)

NSR ID:

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

TO A CONTRACTOR			SWL,	Shortest	Worst operating		C	orrection, de	B(A)	<u> </u>	Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	50	1	-42	-15	-10	0	3	24	
PC2	Peng Chau Kaito	Idling	88	50	5	-42	-8	-10	0	3	31	
PC3		Idlling - ready for departure	91	- 50	1	-42	-15	-10	0	3	27	
MW1		Idlling - arrival	98	50	1	-42	-15	-10	0	3	34	
MW2	Mui Wo Kaito	Idling	90	50	5	-42	-8	-10	0	3	33	
MW3		Idlling - ready for departure	98	50	1	-42	-15	-10	0	3	34	
TB1	·	Idling for arrival	99	41	10	-40	-5	-10	0	3	47	
TB2		Off the landing board	100	25	1	-36	-15	-10	0	3	42	
твз	Tug Boat + Barge	Lorries leave barge	100	32	5	-38	-8	-10	0	3	47	For worst case 30 minutes scenario, TB1, TB2 &
TB4	rug boat + barge	Lorries back to barge	100	25	5	-36	-8	-10	D	3	-	TB3 have selected for assessment.
TB5		Lift on the landing board	98	25	1	-36	-15	-10	0	3	-	
TB6		Idling for departure	99	41	5	-40	-8	-10	0	3	- 1	
	·····					P	redicted C	verall Noise	Level, Leq	(A)Bb _(nlm0c)	51	
								Daytime c	riterion (AN	L-5), dB(A)	55	
								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Exceeda	nce, dB(A)		

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

			SWL,	Shortest	Worst operating		C	orrection, di	3(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		ldlling - arrival	88	50	1	-42	-15	-10	0	3	24	
PC2	Peng Chau Kaito	Idling	88	50	5	-42	-8	-10	0	3	31	
PC3		Idlling - ready for departure	91	50	1	-42	-15	-10	0	3	27	
MW1		Idlling - arrival	98	50	1	-42	-15	-10	0	3	34	
MW2	Mui Wo Kaito	Idling	90	50	5	-42	-8	-10	0	3	33	
мwз	and the second of the second o	Idlling - ready for departure	98	50	. 1	-42	-15	-10	0	3	34	
SB1		Idling	101	25	1	-36	-15	-10	0	3	· 1	
SB2		Extend Conveyor belt	99	25	1	-36	-15	-10	0	3	-	
SB3	Sand Barge + Truck sand loading	Engine standby	94	25	20	-36	-2	-10	-10	3	39	For worst case 30 minutes scenario, SB3, SB4 &SB5 have selected for assessment.
SB4		Truck idling + conveyor load sand into truck	103	25	9	-36	-5	-10	-10	3	45	GODS Have Selected for assessment.
SB5		Relax conveyor + leave	102	25	1	-36	-15	-10	0	3	44	}
				<u> </u>		Pi	redicted C	verall Noise	Level, Leq	(30min)dB(A)	49	
								Daytime o	riterion (AN	L-5), dB(A)	55	
									Exceeda	ince, dB(A)	N - 1	

Case 3 Peng Chau Kaito, Mui Wo Kaito & LPG Container Vessel + LPG Containers Loading Truck

\$650pa \$100pa 520p			SWL,	Shortest	Worst operating	307 740 878	C	orrection, dE	(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	50	1	-42	-15	-10	0	3	24	
°C2	Peng Chau Kaito	Idling	88	50	5	-42	-8	-10	0	3	31	
PC3		Idlling - ready for departure	91	50	1	-42	-15	-10	0	3	27	
1W1		Idlling - arrival	98	50	1	-42	-15	-10	0	3	34	
/W2	Mui Wo Kaito	Idling	90	50	5	-42	-8	-10	0	3	33	· · · · · · · · · · · · · · · · · · ·
1W3		Idlling - ready for departure	98	50	1	-42	-15	-10	0	3	34	
PG1		Idlling - arrival	93	25	2	-36	-12	-10	0	3	38 .	
PG2		Crane operation and LPG containers leave barge	112	25	1	-36	-15	-10	-10	3	44	
PG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	25	1	-36	-15	-10	0	3	37	
PG4	Loading Truck	Idlling	91	25	5	-36	-8	-10	0	3	40	
PG5		Crane operation and LPG containers back to barge	108	25	1	-36	-15	-10	-10	3	40	
PG6		Idlling - ready for departure	105	25	2	-36	-12	-10	0	3	50	
					Predicted Overall Noise Level, Leq _(30min) dB Daytime criterion (ANL-5), dB Exceedance, dB					L-5), dB(A)	55	

()

Discovery Bay EAS

Job No.: 235928

Title:

Fixed Noise Assessment Calculation of SPL at Receivers (Nighttime) Subtitle:

NSR ID: N10b-A1

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

			SWL,	Shortest	Worst operating		C	orrection, dE	B(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	50	1	-42	-15	-10	0	3	24	_
PC2	Peng Chau Kaito	Idling	88	50	5	-42	-8	-10	0	3	31	
PC3		Idlling - ready for departure	91	50	1	-42	-15	-10	0	3	27	
MW1		Idlling - arrival	98	-	1		-	-		•		
MW2	Mul Wo Kaito	Idling	90	-	5	- 1	-	T -	-	•		
MW3		Idlling - ready for departure	98	-	1	- 1	-	·	-			
TB1		Idling for arrival	99	-	10	- 1	-	-	-	•	-	
TB2		Off the landing board	100		1	-	-	-	-	-	-	
твз	Tug Boat + Barge	Lorries leave barge	100	-	5	- 1		-	-	-		For worst case 30 minutes scenario, TB1, TB2 &
TB4	lug boat + barge	Lorries back to barge	100	-	5	-	•	-	-		-	TB3 have selected for assessment.
TB5		Lift on the landing board	98	•	1	- 1	-	-	-	•		
TB6		Idling for departure	99	-	5	- 1		-	-	-	-	
						Pr		Verali Noise Nighttime c	riterion (AN		45	

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

			SWL,	Shortest	Worst operating		C	orrection, dE	(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	50	1	-42	-15	-10	0	3	24	
PC2	Peng Chau Kaito	Idling	88	50	5	-42	-8	-10	0	3	31	
PC3		Idlling - ready for departure	91	50	1	-42	-15	-10	0	3	27	
MW1		Idlling - arrival	98		1		-	-	-	-	-	
MW2	Mui Wo Kaito	Idling	90	•	5	-	-	-	-	-	- 1	
MW3		Idlling - ready for departure	98	-	1	-	-	-	-	-	-	
SB1		Idling	101	-	1	-	-	-		-	-	
SB2		Extend Conveyor belt	99	-	1	- 1	-	-	-		-	
SB3	Sand Barge + Truck sand loading	Engine standby	94	-	20		-	-	-	-	- 1	No Nighttime operation
SB4		Truck idling + conveyor load sand into truck	103	-	9	- 1		1 -	-	-	-	
SB5		Relax conveyor + leave	102	-	1	-	-	-	- 1	-	1 - 1	
				L		P	redicted C	verall Noise	Level, Leq	(30min)dB(A)	33	

45

Nighttime criterion (ANL-5), dB(A)

Exceedance, dB(A)

			SWL,	Shortest	Worst operating	15.55	C	orrection, de	3(A)	.i.	Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	50	1	-42	-15	-10	0	3	24	
PC2	Peng Chau Kaito	Idling	88	50	5	-42	-8	-10	0	3	31	
PC3		Idlling - ready for departure	91	50	1	-42	-15	-10	0	3	27	
MW1		Idlling - arrival	98	-	1		-	-	-	-	- 1	
MW2	Mui Wo Kaito	Idling	90	-	5	-	-	-	-	-	- 1	·
MW3		idlling - ready for departure	98	-	1		-	-		-		
LPG1		Idlling - arrival	93	-	2			T -	-			
LPG2		Crane operation and LPG containers leave barge	112	-	1			-		-	· 1	_
LPG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	-	1		-	 	-	-	•	No Nighttime operation
PG4	Loading Truck	Idlling	91	-	5	-	-	-	· ·	-	. •	NO HIGHLING OPERATION
PG5		Crane operation and LPG containers back to barge	108	-	1	- 1		 	-	-	-	
PG6		Idlling - ready for departure	105	-	2	-	-	├	· ·		-	
				•		P		verall Noise Nighttime o			1 1	

Title:

Discovery Bay EAS

Job No.: 235928

Fixed Noise Assessment

Subtitle: Calculation of SPL at Receivers (Daytime)

NSR ID: N10b-A2

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

Nales Causes ID			SWL,	Shortest	Worst operating	4.	C	orrection, d	B(A)	_	Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	56	1	-43	-15	-10	0	3	23	
PC2	Peng Chau Kaito	Idling	88	56	5	-43	-8	-10	0	3	30	
PC3		Idlling - ready for departure	91	56	1	-43	-15	-10	0	3	26	
MW1		Idlling - arrival	98	56	1	-43	-15	-10	0	3	33	
MW2	Mui Wo Kaito	Idling	90	56	5	-43	-8	-10	0	3	32	
MW3		Idlling - ready for departure	98	56	1	-43	-15	-10	0	3	33	
TB1		Idling for arrival	99	45	10	-41	-5	-10	0	3	46	
TB2		Off the landing board	100	31	1	-38	-15	-10	0	3	40	
ТВ3	Tug Boot & Danne	Lorries leave barge	100	37	5	-39	-8	-10	0	3	46	For worst case 30 minutes scenario, TB1, TB2 &
TB4	Tug Boat + Barge	Lorries back to barge	100	31	5	-38	-8	-10	0	3	-	TB3 have selected for assessment.
TB5		Lift on the landing board	98	31	1	-38	-15	-10	0	3	· -	
TB6	•	Idling for departure	99	45	5	-41	-8	-10	0	3	· 1	
						Pı	redicted C	verali Noise	Level, Leq	(30mln)dB(A)	50	
								Daytime o	riterion (AN	L-5), dB(A)	55	
									Exceeda	nce, dB(A)	M - 1	

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

N-3 8			SWL,	Shortest	Worst operating		C	orrection, di	3(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idliing - arrival	88	56	1	-43	-15	-10	0	3	23	
PC2	Peng Chau Kaito	Idling	88	56	5	-43	-8	-10	0	. 3	30	
PC3		Idlling - ready for departure	91	56	1	-43	-15	-10	0	3	26	
MW1		Idlling - arrival	98	56	1	-43	-15	-10	0	3	33	
MW2	Mui Wo Kaito	Idling	90	56	5	-43	-8	-10	0	3	32	
MW3		Idlling - ready for departure	98	56	1	-43	-15	-10	0	3	33	
SB1		Idling	101	31	1	-38	-15	-10	0	3	-	
SB2		Extend Conveyor belt	99	31	1	-38	-15	-10	0	3	-	
SB3	Sand Barge + Truck sand loading	Engine standby	94	31	20	-38	-2	-10	0	3	47	For worst case 30 minutes scenario, SB3, SB4 &SB5 have selected for assessment.
SB4		Truck idling + conveyor load sand into truck	103	31	9	-38	-5	-10	-10	3	43	GODO HAVE SCIENCES FOR BUSCOSITICITIE.
SB5		Relax conveyor + leave	102	31	1	-38	-15	-10	0	3	42	
				<u> </u>		Pı	redicted C	verall Noise	Level, Leq	30mln)dB(A)	50	
								Daytime c	riterion (AN	L-5), dB(A)	55	
									Exceeda	nce, dB(A)	-	

Case 3 Peng Chau Kaito, Mui Wo Kaito & LPG Container Vessel + LPG Containers Loading Truck

.,,,			SWL,	Shortest	Worst operating		C	orrection, dB	(A)	121	Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	56	1	-43	-15	-10	0	3	23	
PC2	Peng Chau Kaito	Idling	88	56	5	-43	-8	-10	0	3	30	
PC3		Idlling - ready for departure	91	56	1	-43	-15	-10	0	3	26	
MW1		Idlling - arrival	98	56	1	-43	-15	-10	0	3	33	
MW2	Mui Wo Kaito	Idling	90	56	5	-43	-8	-10	0	3	32	
MW3		Idlling - ready for departure	98	56	1	-4 3	-15	-10	0	3	33	
.PG1		Idlling - arrival	93	31	2	-38	-12	-10	0	3	36	
.PG2	•	Crane operation and LPG containers leave barge	112	31	1	-38	-15	-10	-10	3	42	
PG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	31	1	-38	-15	-10	0	3	35	
.PG4		Idlling	91	31	5 449	-38	-8	-10	0	3	38	
PG5		Crane operation and LPG containers back to barge	108	31	-1 usas	38	-15	-10	-10	3	38	
PG6	 	Idlling - ready for departure	105	31	2	-38	-12	-10	0	3	48	

odicted Overall Noise Level, Leq (30min)dB(A) 51

Daytime criterion (ANL-5), dB(A) 55

Exceedance, dB(A) -

Discovery Bay EAS

Jab No.:

Fixed Noise Assessment

Title: Subtitle: Calculation of SPL at Receivers (Nighttime)

NSR ID:

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

🔣			SWL,	Shortest	Worst operating		C	orrection, di	B(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	56	1	-43	-15	-10	0	3	23	
PC2	Peng Chau Kaito	Idling	88	56	5	-43	-8	-10	0 .	3	30	
PC3		Idlling - ready for departure	91	56	1	-43	-15	-10	0	3	26	
/W1		idlling - arrival	98		1	-	•	-	-	-	-	
1W2	Mui Wo Kaito	tdling	90		5	-	•	-	-	-		
IW3		Idlling - ready for departure	98		1	-	-	-	-			
ГВ1		Idling for arrival	99	-	10	-	•	-	-	-		
ГВ2		Off the landing board	100	<u> </u>	1	-	-	-	-	-	<u> </u>	
гвз	Tug Boat + Barge	Lorries leave barge	100	-	5	-	-	-	-	-		For worst case 30 minutes scenario, TB1, TB2
ГВ4	rug Boat + Baige	Lorries back to barge	100	-	5		-	T	- .	·	-	TB3 have selected for assessment.
B5		Lift on the landing board	98	-	1	-	- .	-	-		-	
В6		Idling for departure	99	-	5	-	-	-	- ; :	-		
						P			Level, Leq riterion (AN Exceeda	SURES DEVENOUS	45	

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

			SWL,	Shortest	Worst operating		C	orrection, dB	(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	56	. 1	-43	-15	-10	0	3	23	
PC2	Peng Chau Kaito	Idling	88	56	5	-43	-8	-10	0	3	30	
PC3		Idlling - ready for departure	91 .	56	1 _	-43	-15	-10	0	3	26	
MW1		Idlling - arrival	98	-	1	-	•	-	-	-	-	
MW2	Mui Wo Kaito	Idling	90	-	5	-	-	-	-	-	-	
мwз		Idlling - ready for departure	98	-	1	-	-	-	-	-	-	
SB1	•	Idling	101	-	1	-	-	-	-	•	,	
SB2		Extend Conveyor belt	99	-	1	-	-		-	-	•	
SB3	Sand Barge + Truck sand loading	Engine standby	94	-	20	-	-	-	-	-	-	No Nighttime operation
SB4		Truck idling + conveyor load sand into truck	103	-	9		-	· -	-	•	-	
SB5		Relax conveyor + leave	102	-	1	-	-	-	-	-	-	
						· P	redicted (Overall Noise	Level, Leq	(30min)dB(A)	32	
						450		Nighttime c	riterion (AN	L-5), dB(A)	45	
									Exceeda	nce, dB(A)		

967 ARE			SWL,	Shortest	Worst operating		C	orrection, dE	(A)		Predicted	
Voise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	56	1	-43	-15	-10	0	3	23	
°C2	Peng Chau Kaito	Idling	88	56	5	-43	-8	-10	0	3	30	
PC3		Idlling - ready for departure	91	56	1	-43	-15	-10	0	3	26	
1W1		Idlling - arrival	98	<u>-</u>	1	-	-	-	-	-	-	
/W2	Mui Wo Kaito	Idling	90	-	5	-	-	-	-	-		
NW3		Idlling - ready for departure	98	-	1	-	-	-	-	-	- 1	
.PG1		Idlling - arrival	93	-	2	- 1	-	-	-	-		
PG2		Crane operation and LPG containers leave barge	112	<u> </u>	1	-	-	-	-	•		
PG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	-	1	-	-	-		-	-	No Nighttime operation
PG4	Loading Truck	Idlling	91	-	5	-	-	-	-	•	- 1	No Nightime operation
PG5		Crane operation and LPG containers back to barge	108	-	1	-		-	-	-	-	
PG6		Idlling - ready for departure	105	-	2		-	-	-	-		
						P	redicted C	verall Noise	Level, Leq	30min)dB(A)	32	
								Nighttime c	riterion (AN	L-5), dB(A)	45	
									Exceeda	nce, dB(A)	1 - 1	•

Discovery Bay EAS

Job No.: 235928

Title: Fixed Noise Assessment

Subtitle: Calculation of SPL at Receivers (Daytime)

NSR ID: N10b-A4

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

			SWL,	Shortest	Worst operating		C	orrection, di	3(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	73	1	-45	-15	-10	0	3	21	
PC2	Peng Chau Kaito	Idling	88	73	5	-45	-8	-10	0	3	28	
PC3		Idlling - ready for departure	91	73	1	-45	-15	-10	0	3	24	
MW1		Idlling - arrival	98	73	1	-45	-15	-10	0	3	31	
MW2	Mui Wo Kaito	Idling	90	73	5	-45	-8	-10	0	3	30	
MW3		Idlling - ready for departure	98	73	1	-45	-15	-10	0	3	31	
TB1		Idling for arrival	99	57	. 10	-43	-5	-10	0	3	44	
TB2		Off the landing board	100	46	1	-41	-15	-10	0	3	37	
TB3	Tug Boat + Barge	Lorries leave barge	100	51	5	-42	-8	-10	0	3	43	For worst case 30 minutes scenario, TB1, TB2 &
TB4	rug boat + barge	Lorries back to barge	100	46	5	-41	-8	-10	0	3	- 1	TB3 have selected for assessment.
TB5		Lift on the landing board	98	46	1	-41	-15	-10	0	3		
TB6		Idling for departure	99	57	5	-43	-8	-10	0	3	- 1	
						Pi	redicted C	verall Noise	Level, Leq	(30min)dB(A)	47	
						Daytime criterion (ANL-5), dB(55	· ·
									Fyceeda	nce. dB(A)	1 . 1	

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

			SWL,	Shortest	Worst operating		C	orrection, di	3(A)	100	Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	73	1	-45	-15	-10	0	3	21	
PC2	Peng Chau Kaito	Idling	88	73	5	-45	-8	-10	0	3	28	
PC3		Idlling - ready for departure	91	73	1	-45	-15	-10	0	3	24	
MW1		Idlling - arrival	98	73	1	-45	-15	-10	0	3	31	
MW2	Mui Wo Kaito	Idling	90	73	5	-45	-8	-10	0	3	30	
MW3		Idlling - ready for departure	98	73	1	-45	-15	-10	0	3	31	
SB1		Idling	101	46	1	-41	-15	-10	0	3	-	
SB2	•	Extend Conveyor belt	99	46	1	-41	-15	-10	0	3	-	
SB3	Sand Barge + Truck sand loading	Engine standby	94	46	20	-41	-2	-10	0	3	44	For worst case 30 minutes scenario, SB3, SB4 &SB5 have selected for assessment.
SB4		Truck idling + conveyor load sand into truck	103	46	9	-41	-5	-10	-10	3	40	dobb have occopied for assessment.
SB5		Relax conveyor + leave	102	46	1	-41	-15	-10	0	3	39	
				<u> </u>	Silver of the second	P	redicted C	Verall Noise	Level, Leq	(A)Bb _{(nim0¢}	47	

Case 3 Peng Chau Kaito, Mui Wo Kaito & LPG Container Vessel + LPG Containers Loading Truck

			SWL,	Shortest	Worst operating		C	orrection, di	3(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	. Remark
PC1		Idlling - arrival	88	73	1	-45	-15	-10	0	3	21	
PC2	Peng Chau Kaito	ldling	88	73	5	-45	-8	-10	0	3	28	
PC3	1	Idlling - ready for departure	91	73	1	-45	-15	-10	. 0	3	24	· · · · · · · · · · · · · · · · · · ·
MW1		Idlling - arrival	98	73	1	-45	-15	-10	0	3	31	
MW2	Mui Wo Kaito	Idling	90	73	5	-45	-8	-10	0	3	30	
мwз		Idlling - ready for departure	98	73	1 990	45	-15	-10	0	3	31	
LPG1		Idlling - arrival	93	46	2	-41	-12	-10	0	3	33	
LPG2		Crane operation and LPG containers leave barge	112	46	1 Materials	-41	-15	-10	-10	3	39	
LPG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	46	1 1 0000	-41	-15	-10	0	3	32	
LPG4	Loading Truck	Idlling	91	46	5	-41	-8	-10	0	3	35	
LPG5	4	Crane operation and LPG containers back to barge	108	46	1	-41	-15	-10	-10	3	35	
LPG6	1	Idlling - ready for departure	105	46	2	-41	-12	-10	0	3	45	

Predicted Overall Noise Level, Leq (30min)dB(A) 47

Daytime criterion (ANL-5), dB(A) 55

Exceedance, dB(A) -

Daytime criterion (ANL-5), dB(A)

Exceedance, dB(A)

(100 May 100 M

C

.

C.

Discovery Bay EAS

Job No.:

235928

Title: Fixed Noise Assessment Calculation of SPL at Receivers (Nighttime) Subtitle:

NSR ID: N10b-A4

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

			SWL,	Shortest	Worst operating		C	orrection, dE	(A)	\$	Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	73	1	-45	-15	-10	0	3	21	
PC2	Peng Chau Kaito	Idling	88	73	5	-45	-8	-10	0	3	28	
PC3		Idlling - ready for departure	91	73	1	-45	-15	-10	0	3	24	
MW1		Idlling - arrival	98	-	1	-	-	-	•	•	-	
MW2	Mui Wo Kaito	Idling	90	-	5	-	-	-	-			
MW3		Idlling - ready for departure	98	-	1	-	·	- '	-		-	
TB1		Idling for arrival	99	-	10	-	-	-	•	-	-]	
TB2		Off the landing board	100	•	1	-	-	T -	-	-		
TB3	Tue Post I Perso	Lorries leave barge	100	-	5	-	-	-		-		For worst case 30 minutes scenario, TB1, TB2 &
TB4	Tug Boat + Barge	Lorries back to barge	100	-	5	-	-	T	-	-		TB3 have selected for assessment.
TB5		Lift on the landing board	98		1	-	-		•	-	-	
TB6		Idling for departure	99	-	5		-	T -	-	-	- 1	
			·			Р	redicted O	verall Noise	Level, Leq	_{30min)} dB(A)	30	
					1			Nighttime c	riterion (AN	L-5), dB(A)	45	

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

			SWL.	Shortest	Worst operating		Co	orrection, dB	(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	73	1	-45	-15	-10	0	3	21	
PC2	Peng Chau Kaito	Idling	88	73	5 .	-45	-8	-10	0	3	28	
PC3		Idlling - ready for departure	91	73	1	-45	-15	-10	0	3	24	
MW1		Idlling - arrival	98	-	1	- 1		-	-	-	-	
MW2	Mui Wo Kaito	Idling	90	-	5			٠	-	-	-	
МW3		Idlling - ready for departure	98	*	1			-	-	-	-	
SB1		Idling	101	-	1	-	-	-	-	-	-	
SB2	•	Extend Conveyor belt	99	-	1	- 1	-	-	-	-	-	
SB3	Sand Barge + Truck sand loading	Engine standby	94	-	20	-	-	-			· -	No Nighttime operation
SB4		Truck idling + conveyor load sand into truck	103	-	9	-	-	-	-	-	- 1	·
SB5		Relax conveyor + leave	102		1	-	-			-	-	
				<u> </u>	65965	Pi	edicted O	verall Noise	Lavel Leg	-AdB(A)	30	

Case 3 Peng Chau Kaito, Mui Wo Kaito & LPG Container Vessel + LPG Containers Loading Truck

Nata-Samuel			SWL.	Shortest	Worst operating		C	orrection, di	3(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (mln)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	73	1	-45	-15	-10	0	3	21	
PC2	Peng Chau Kaito	Idling	88	73	5	-45	-8	-10	Ò	3	28	
PC3		Idlling - ready for departure	91	73	1	-45	-15	-10	0	3	24	
MW1		Idlling - arrival	98	-	1	- 1	-	 -	-	-	·	
MW2	Mui Wo Kaito	Idling	90	-	5	- 1	-		•	,		
MW3		Idlling - ready for departure	98	•	1		-	-	-	•		
LPG1		Idlling - arrival	93	-	2	- 1	-	T-	-			
LPG2		Crane operation and LPG containers leave barge	112	•	1		-	-	-		•	
LPG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	-	1	•		 			-	Al- Nightting approxima
LPG4	Loading Truck	Idlling	91		5	- 1	 -	 	-		·	No Nighttime operation
LPG5		Crane operation and LPG containers back to barge	108	-	1		-	-			, ,	
LPG6	•	Idlling - ready for departure	105	•	2			†	-			

Predicted Overall Noise Level, Leq (30min)dB(A) 30 Nighttime criterion (ANL-5), dB(A) 45 Exceedance, dB(A)

Nighttime criterion (ANL-5), dB(A)

Exceedance, dB(A)

45

Discovery Bay EAS

Job No.: 235928

Title: Fixed Noise Assessment

Subtitle: Calculation of SPL at Receivers (Daytime)

NSR ID: N10b-A5

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

			SWL,	Shortest	Worst operating		C	orrection, de	3(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	84	1	-46	-15	-5	0	3	25	
PC2	Peng Chau Kaito	Idling	88	84	5	-46	-8	-5	0	3	32	
PC3		Idiling - ready for departure	91	84	1	-46	-15	-5	0	3	28	
MW1		Idlling - arrival	98	84	1	-46	-15	-5	0	3	35	
MW2	Mui Wo Kaito	Idling	90	84	5	-46	-8	-5	0	3	34	
MW3		Idlling - ready for departure	98	84	1	-46	-15	-5	0	3	35	
TB1		Idling for arrival	99	67	10	-45	-5	0	0	3	53	
TB2		Off the landing board	100	58	1	-43	-15	-10	0	3	35	
ТВ3	Tug Poot I Porce	Lorries leave barge	100	62	5	-44	-8	0	0	3	51	For worst case 30 minutes scenario, TB1, TB2 &
TB4	Tug Boat + Barge	Lorries back to barge	100	58	5	-43	-8	0	0	3	· ·	TB3 have selected for assessment.
TB5		Lift on the landing board	98	58	1	-43	-15	-10	0	3	· -	
TB6	_	Idling for departure	99	67	5	-45	-8	0	0	3	- 1	
					1	P	redicted C	verali Noise	Level, Leq	(30min)dB(A)	55	
							11/1	Daytime c	riterion (AN	L-5), dB(A)	55	
						.	Market 1		Exceeda	nce, dB(A)	1 - 1	

F1.7

6

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

			SWL,	Shortest	Worst operating		C	orrection, di	3(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	84	1	-46	-15	-5	0	3	25	
PC2	Peng Chau Kaito	ldling	88	84	5	-46	-8	-5	0	3	32	
PC3		Idlling - ready for departure	91	84	1	-46	-15	-5	0	3	28	
MW1		Idlling - arrival	98	84	1	-46	-15	-5	0	3	35	
MW2	Mui Wo Kaito	Idling	90	84	5	-46	-8	-5	0	3	34	
MW3 .		Idlling - ready for departure	98	84	1	-46	-15	-5	0	3	35	
SB1		Idling	101	58	1	-43	-15	-5	0	3	- 1	
SB2		Extend Conveyor belt	99	58	1	-43	-15	-5	0	3	- 1	
SB3	Sand Barge + Truck sand loading	Engine standby	94	58	20	-43	-2	-5	0	3	47	For worst case 30 minutes scenario, SB3, SB4 &SB5 have selected for assessment.
SB4		Truck idling + conveyor load sand into truck	103	58	9	-43	-5	-5	-10	3	43	dopo have delected for assessment.
SB5		Relax conveyor + leave	102	58	1	-43	-15	-5	0	3	42	
				<u> </u>		Pi	redicted O	verali Noise	Level, Leq	_(30min) dB(A)	50	
	,							Daytime c	riterion (AN	L-5), dB(A)	55	•
					KEEKA.				Exceeda	nce, dB(A)	-	

			SWL,	Shortest	Worst operating		C	orrection, dE	3(A)		Predicted	- <u>-</u>
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark ,
PC1		Idlling - arrival	88	84	1	-46	-15	-5	0	3	25	
PC2	Peng Chau Kaito	Idling	88	84	5	-46	-8	-5	0	3	32	
PC3		Idlling - ready for departure	91	84	1	-46	-15	-5	0	3	28	_
MW1		Idlling - arrival	98	84	1	-46	-15	-5	0	3	35	
MW2	Mui Wo Kaito	Idling	90	84	5	-46	-8	-5	0	3	34	
VW3		Idlling - ready for departure	98	84	1 1 %	-46	-15	-5	0	3	35	
.PG1		Idlling - arrival	93	58	2	-43	-12	-5	0	3	36	
.PG2		Crane operation and LPG containers leave barge	112	58	1 4 6	-43	-15	-5	-10	3	42	
PG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	58	1 . 1	-43	-15	-5	0	3	35	
.PG4	Loading Truck	ldlling	91	58	5 🔠	-43	-8	-5	0	3	38	
.PG5		Crane operation and LPG containers back to barge	108	58	8.1 % %	-43	⊕15	-5	-10	3	38	
LPG6	•	Idlling - ready for departure	105	58	2	-43	-12	-5	0	3	48	
				<u> </u>		P	redicted C	Verall Noise	Level, Leq	_(30min) dB(A)	50	
								Daytime c	riterion (AN	L-5), dB(A)	55	

Discovery Bay EAS oject:

235928 b No.:

Fixed Noise Assessment

ıbtitle: Calculation of SPL at Receivers (Nighttime)

SR ID: N10b-A5

1se 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

8.4			SWL,	Shortest	Worst operating	. 1884	C	orrection, dE	B(A)		Predicted	
olse Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
21		Idlling - arrival	88	84	1	-46	-15	-5	0	3	25	
32	Peng Chau Kaito	Idling	88	84	5	-46	-8	-5	0	3	32	
23		Idlling - ready for departure	91	84	1	-46	-15	-5	0	3	28	
W1		Idlling - arrival	98	-	1	-	-			-	-	
W2	Mui Wo Kaito	Idling	90		5	-	-	-	-	-	•	
W3		Idlling - ready for departure	98	-	1	 	-	-	•	-	-	
31		Idling for arrival	99	-	10	-	-	-	-	-	•	
32		Off the landing board	100	-	1		-	T -	-	•	-	
33	Tug Boat + Barge	Lorries leave barge	100	-	5	-	. •	-	•	-	-	For worst case 30 minutes scenario, TB1, TB2 &
34	rug Boat + Baige	Lorries back to barge	100	-	5	- 1	_	-	•	-	-	TB3 have selected for assessment.
35		Lift on the landing board	98	-	1	-	-	-	-	-	-	
36		Idling for departure	99	•	5		-	-		-	-	
				<u> </u>	100000000000000000000000000000000000000	Pi	redicted C	overall Noise	Level, Leq	(A)Bb _(nim0t)	34	
								Nighttime c	4444	. 664466		
					I see a see a				Exceeds	nce, dB(A)	1 - 1	

	<u> </u>		SWL,	Shortest	Worst operating	1,000	C	orrection, dE	B(A)		Predicted	<u> </u>
oise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
C1		Idlling - arrival	88	84	1	-46	-15	-5	0	3	25	
C2	Peng Chau Kaito	Idling	88	84	5	-46	-8	-5	0	3	32	
C3		Idlling - ready for departure	91	84	1	-46	-15	-5	0	3	28	
W1		Idlling - arrival	98	-	1	-	-	-	•	-		
W2	Mui Wo Kaito	Idling	90	-	5	- 1	-	· -	-	•		
W3		Idlling - ready for departure	98	-	1		-	-	-	•	-	
B1		Idling -	101	-	1	-	_	-	-	-		
B2		Extend Conveyor belt	99	-	1	,	-	-	-	-	-	
B3	Sand Barge + Truck sand loading	Engine standby	94	-	20	-	-	-	- 1		-	No Nighttime operation
B4	•	Truck idling + conveyor load sand into truck	103	-	9	-	-	-	-	-		
B5		Relax conveyor + leave	102		1				_	-		

45

Nighttime criterion (ANL-5), dB(A)

Exceedance, dB(A)

Exceedance, dB(A)

loise Source ID			SWL,	Shortest	Worst operating		С	orrection, di	B(A)	-1665 - F. (1665)	Predicted	
oise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
C1		Idlling - arrival	88	84	1	-46	-15	-5	0	3	25	
C2	Peng Chau Kaito	Idling	88	84	5	-46	-8	-5	0	3	32	
C3		Idlling - ready for departure	91	84	1	-46	-15	-5	0	3	28	
W1		Idlling - arrival	98	-	1	-	-	-	- 1	-		· · · · · · · · · · · · · · · · · · ·
W2	Mui Wo Kaito	Idling	90	-	5	-	-	-	- 7	-	- 1	
W3	ININI YYO NAILO	Idlling - ready for departure	98	-	1	-	_	<u> </u>	- 1		- 1	
PG1		Idlling - arrival	93	-	2	-	-	-		-	-	
PG2		Crane operation and LPG containers leave barge	112	-	1	-		-		-	-	
PG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	•	1		-	-	-	-	-	No Nighttime operation
PG4	Loading Truck	Idlling	91		5	-	-	-	-			No Nightime operation
PG5		Crane operation and LPG containers back to barge	108	-	1	<u> </u>	-	-	-		-	
PG6		Idlling - ready for departure	105		2		-	-	-	•	i - I	

Discovery Bay EAS

Job No.: 235928

Title: Fixed Noise Assessment

Subtitle:

Calculation of SPL at Receivers (Daytime)

NSR ID: N10b-A6

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

			SWL,	Shortest	Worst operating	100000000000000000000000000000000000000	C	orrection, di	3(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	90	1	-47	-15	0	0	3	29	
PC2	Peng Chau Kaito	Idling	88	- 90	5	-47	-8	0	0	3	36	
PC3		Idlling - ready for departure	91	90	1	-47	-15	0	0	3	32	
MW1		Idlling - arrival	98	90	1	-47	-15	0	0	3	39	
MW2	Mui Wo Kaito	Idling	90	90	5	-47	-8	0	0	3	38	
MW3		Idlling - ready for departure	98	90	1	-47	-15	0	0	3	39	
TB1		Idling for arrival	99	74	10	-45	-5	0	0	3	52	
TB2		Off the landing board	100	65	1	-44	-15	0	0	3	44	
твз	Tora Book Book	Lonies leave barge	100	68	5	-45	-8	0	0	3	51	For worst case 30 minutes scenario, TB1, TB2 &
TB4	Tug Boat + Barge	Lonies back to barge	100	65	5	-44	-8	0	0	3		TB3 have selected for assessment.
TB5		Lift on the landing board	98	65	1	-44	-15	0	0	3	-	
TB6		Idling for departure	99	74	5	-45	-8	0	0	3	-	
				·		P	redicted (Dverali Noise Daytime c	riterion (AN		55	

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

			SWL,	Shortest 🖟	Worst operating		C	orrection, dB	I(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	90	1	-47	-15	0	0	3	29	
PC2	Peng Chau Kaito	Idling	88	90	5	-47	-8	0	0	3	36	
PC3		Idlling - ready for departure	91	90	1	-47	-15	0	0	3	32	
MW1		Idlling - arrivat	98	90	1	-47	-15	0	0	3	39	
MW2	Mui Wo Kaito	Idling	90	90	5	-47	-8	0	0	3	38	
MW3		Idlling - ready for departure	98	90	1	-47	-15	0	0	3	39	
SB1		Idling	101	65	1	-44	-15	-5	0	3	-	·
SB2		Extend Conveyor belt	99	65	1	-44	-15	-5	0	3	- 1	
SB3	Sand Barge + Truck sand loading	Engine standby	94	65	20	-44	-2	-5	0	3	46	For worst case 30 minutes scenario, SB3, SB4 &SB5 have selected for assessment.
SB4		Truck idling + conveyor load sand into truck	103	65	9	-44	-5	-5	-10	3	42	acad have selected for assessment.
SB5		Relax conveyor + leave	102	65	1	-44	-15	-5	0	3	41	
				<u> </u>		P	redicted O	verall Noise	Level, Leq	_{30min)} dB(A)	50	
					3-06-6330		100	Daytime c	riterion (AN	L-5), dB(A)	55	
									Exceeda	nce, dB(A)	-	

. <u> </u>			SWL,	Shortest	Worst operating		Co	orrection, dE	S(A)		Predicted	
ioise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)		Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
C1		Idlling - arrival	88	90	1	-47	-15	0	0	3	29	
C2	Peng Chau Kaito	Idling	88	90	5	-47	-8	0	0	3	36	
C3		Idlling - ready for departure	91	90	1	-47	-15	0	0	3	32	
W1		Idlling - arrival	98	90	1	-47	-15	0	0	3	39	 :
W2	Mui Wo Kaito	Idling	90	90	5	-47	-8	0	0	3	38	
W3		Idlling - ready for departure	98	90	1	-47	-15	0	0	3	39	
PG1		Idlling - arrival	93	65	2	-44	-12	-5	0	3	35	
°G2		Crane operation and LPG containers leave barge	112	65	1	-44	-15	-5	-10	3	41	
G3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	65	1	-44	-15	-5	0	3	34	
G4	Loading Truck	Idlling	91	65	5	-44	-8	-5	0	3	37	
G5		Crane operation and LPG containers back to barge	108	65	1 1/2000	-44	:-15	-5	-10	3	37	
G6		Idlling - ready for departure	105	65	2 4 4 4	-44	-12	-5 verall Noise	0	3 .	47	

Case 2

Discovery Bay EAS

Job No.: 235928

Title: Fixed Noise Assessment

Subtitle: Calculation of SPL at Receivers (Nighttime)

NSR ID: N10b-A6

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

			SWL,	Shortest	Worst operating		Co	orrection, dB	(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	90	1	-47	-15	0	0	3	29	
PC2	Peng Chau Kaito	Idling	88	90	5	-47	-8	0	0	3	36	
PC3		Idlling - ready for departure	91	90	1	-47	-15	0	0	3	32	
MW1		ldlling - arrival	98	-	1	- 1	-	-	•	-	-	·
MW2	Mui Wo Kaito	ldling	90	•	5	-	-	-	-	-	' -	
MW3		Idlling - ready for departure	98	•	1		-	-	•	-	-	
TB1		Idling for arrival	99		10	-	-	-	•	-	-	
TB2		Off the landing board	100	-	1	-	-	-	-	-	-	
TB3	Tug Boat + Barge	Lorries leave barge	100	-	5	-	-		-	-	-	For worst case 30 minutes scenario, TB1, TB2 &
TB4	rug boat + barge	Lorries back to barge	100	-	5	-	-	-	•	-	-	TB3 have selected for assessment.
TB5		Lift on the landing board	98	-	1	-	-	-	-	-	-	
TB6		Idling for departure	99	-	5	•		-	•	-	•	
						Pi		verall Noise Nighttime cr		-jakralija kittoloksi.		
										nce, dB(A)		

Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

			SWL,	Shortest	Worst operating		C	orrection, dE	B(A)	artis.	Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	90	1	-47	-15	0	0	3	29	
PC2	Peng Chau Kaito	Idling	88	90	5	-47	-8	0	0	3	36	
PC3	<u></u>	Idlling - ready for departure	91	90	1	-47	-15	0	0	3	32	
MW1		Idlling - arrival	98	-	1	- 1	-	-	-	-	-	
WW2	Mui Wo Kaito	Idling	90	-	5	-		•		-	-	
VW3		Idlling - ready for departure	98	-	1	- 1	-	-	-	-	-	
SB1		Idling	101	-	1	-	-	-	-	-	1 - 1	
3B2		Extend Conveyor belt	99	-	1	- 1	•	-	-	-	-	
3B3	Sand Barge + Truck sand loading	Engine standby	94	-	20	-	-	-	-	-	-	No Nighttime operation
3B4		Truck idling + conveyor load sand into truck	103	-	9	-	-	-	-	-	-	
\$B5		Relax conveyor + leave	102	-	1	- 1	-	1 •	-	-	- 1	
						Pr	edicted C	verall Noise	Level, Leq	_(30min) dB(A)	38	
								Nighttime c	riterion (AN	L-5), dB(A)	45	

Exceedance, dB(A)

Exceedance, dB(A)

g Chau Kaito	Activities/Equipment Idlling - arrival Idling Idlling - ready for departure Idlling - arrival	88 88 91 98	separation distance (m) 90 90	Worst operating time (min) 1 5	-47 -47 -47	-15 -8	Screening 0 0	Mitigation 0 0	Facade 3	Predicted SPL, dB(A)	Remark
g Chau Kaito	Idling Idling - ready for departure Idling - arrival	88 91	90	5	-47	-8	0	0	3		
	Idlling - ready for departure Idlling - arrival	91		5			0	0	3	26	
	Idlling - arrival		90	1 1	47					1 20	
		98			4/	-15	0	0 .	3	32	
i Wo Kaito			-	1	-	-	-	-	-	-	
	Idling	90	•	5	-	-	-	•	•		
INITI WO KAILO	Idlling - ready for departure	98	-	1	-	-	-	-	-	- 1	
	Idlling - arrival	93	-	2	-	-	-	-	-	-	
	Crane operation and LPG containers leave barge	112	•	1		-	-	-	•	-	,
essel + LPG Containers	LPG containers loading into truck	95	-	1		-	-	-	-		AL ARLING CONT.
ding Truck	Idlling	91	-	5		-	-	-	•	 - 	No Nighttime operation
	Crane operation and LPG containers back to barge	108	-	1	-	-	-	-	-	T	
	Idlling - ready for departure	105	-	2	-	-	-	-		-	
	essel + LPG Containers ding Truck	Crane operation and LPG containers leave barge LPG containers loading into truck	Crane operation and LPG containers leave barge LPG containers loading into truck 10 ps 112 12 ps 113 14 ps 15 ps 16 ps 17 ps 17 ps 18 ps 1	Crane operation and LPG containers leave barge 112 - LPG containers loading into truck 95 - Idlling 91 - Crane operation and LPG containers back to barge 108 -	Crane operation and LPG containers leave barge 112 - 1 LPG containers loading into truck 95 - 1 Idlling 91 - 5 Crane operation and LPG containers back to barge 108 - 1	Crane operation and LPG containers leave barge	Crane operation and LPG containers leave barge	Crane operation and LPG containers leave barge 112 - 1 - - -	Crane operation and LPG containers leave barge	Crane operation and LPG containers leave barge 112 - 1 - - - - - - - -	Crane operation and LPG containers leave barge 112 - 1 - - - - - - - -

Discovery Bay EAS

Job No.: 235928

Title: Fixed Noise Assessment

Subtitle: Calculation of SPL at Receivers (Daytime)

NSR ID: N10b-A8

Case 1 Peng Chau Kaito, Mul Wo Kaito & Tug Boat with Barge

	Description		SWŁ,	Shortest	Worst operating		C	orrection, dE	3(A)		Predicted	
Noise Source ID		Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idiling - arrival	88	107	1	-49	-15	0	0	3	28	
PC2	Peng Chau Kaito	Idling	88	107	5	-49	-8	0	0	3	35	·
PC3		Idlling - ready for departure	91	107	1	-49	-15	0	0	3	31	
MW1		Idlling - arrival	98	107	1	-49	-15	0	D	3	38	
MW2	Mui Wo Kaito	Idling	90	107	5	-49	-8	0	0	3	37	
MW3		Idlling - ready for departure	98	107	1	-49	-15	0	0	3	38	
TB1		Idling for arrival	99	91	10	-47	-5	0	0	3	50	
TB2		Off the landing board	100	82	1	-46	-15	0	0	3	42	
твз	Tue Post / Posts	Lorries leave barge	100	86	5	-47	-8	0	0	3	49	For worst case 30 minutes scenario, TB1, TB2 &
ТВ4	Tug Boat + Barge	Lorries back to barge	100	82	5	-46	-8	0	0	3	-	TB3 have selected for assessment.
TB5		Lift on the landing board	98	82	1	-46	-15	0	0	3		
TB6		Idling for departure	99	91	5	-47	-8	0	0	3		
			·····			P	redicted C	Verall Noise Daytime c	riterion (AN		55	

Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

	Description		SWL,	Shortest	Worst operating		C	orrection, de	B(A)		Predicted	
Noise Source ID		Activities/Equipment	dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	107	1	-49	-15	0	0	3	28	
C2	Peng Chau Kaito	Idling	88	107	5	-49	-8	0	0	3	35	_
C3		Idlling - ready for departure	91	107	1	-49	-15	0	0	3	31	
/W1		Idlling - arrival	98	107	1	-49	-15	0	0	3	38	
AW2	Mui Wo Kaito	Idling	90	107	5	-49	-8	0	0	3	37	
VM3		Idlling - ready for departure	98	107	1	-49	-15	0	0	3	38	
SB1		ldling	101	82	1	-46	-15	-5	0	3		
B2		Extend Conveyor belt	99	82	1	-46	-15	-5	0	3		
SB3	Sand Barge + Truck sand loading	Engine standby	94	82	20	-46	-2	-5	0	3	44	For worst case 30 minutes scenario, SB3, SB4 &SB5 have selected for assessment.
SB4		Truck idling + conveyor load sand into truck	103	82	9	-46	-5	-5	-10	3	39	dopo have selected for assessment.
B5	i	Relax conveyor + leave	102	82	1	-46	-15	-5	0	3	39	
						Pi	edicted C	verall Noise	Level, Leq	_{30min)} dB(A)	48	
								Daytime c	riterion (AN	L-5), dB(A)	55	
									Exceeda	nce, dB(A)	(

Case 3 Peng Chau Kaito, Mui Wo Kaito & LPG Container Vessel + LPG Containers Loading Truck

	Description		SWL,	Shortest	Worst operating		С	orrection, dE	I(A)	8	Predicted	
Noise Source ID		Activities/Equipment	dB(A)	separation distance (m)	4. 1245 Million (Million)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	107	1	-49	-15	0	0	3	28	
C2	Peng Chau Kaito	Idling	88	107	5	-49	-8	0	0	3	35	
PC3		Idlling - ready for departure	91	107	1	-49	-15	0	0	3	31	
VW1		Idlling - arrival	98	107	1	-49	-15	0	7 0	3	38	
MW2	Mui Wo Kaito	Idling	90	107	5	-49	-8	0	0	3	37	
мwз		Idlling - ready for departure	98	107	1	-49	-15	0	0	3	38	
LPG1		Idlling - arrival	93	82	2	-46	-12	-5	0	3	33	
LPG2		Crane operation and LPG containers leave barge	112	82	1	-46	-15	-5	-10	3	39	
PG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	82	1	-46	-15	-5	0	3	32	
PG4	Loading Truck	Idiling	91	82	5	-46	-8	-5	0	3	35	
PG5		Crane operation and LPG containers back to barge	108	82	1	-46	-15	-5	-10	3	35	
LPG6		Idlling - ready for departure	105	82	2	-46	-12	-5	0	3	45	
		·		L		P	redicted C	Verall Noise	Level, Leq	_{30min)} dB(A)	48	
								Daytime c	riterion (AN	L-5), dB(A)	55	

Exceedance, dB(A)

29

Discovery Bay EAS

Job No.: Title:

Fixed Noise Assessment

Subtitle: Calculation of SPL at Receivers (Nighttime)

235928

NSR ID: N10b-A8

Case 1 Peng Chau Kaito, Mui Wo Kaito & Tug Boat with Barge

W.			SWL,	Shortest	Worst operating		C C	orrection, di	3(A)		Predicted	
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	(a) 10 miles	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	107	1	-49	-15	0	0	3	28	
PC2	Peng Chau Kaito	Idling	88	107	5	-49	-8	0	0	3	35	
PC3		Idlling - ready for departure	91	107	1	-49	-15	0	0	3	31	
MW1		Idlling - arrival	98	•	1	- 1	•	•	-	•	•	
MW2	Mui Wo Kaito	Idling	90	•	5	-	-	•	•	-	•	
MW3		Idlling - ready for departure	98	-	1	-	•	-	•	-		
TB1		Idling for arrival	99	-	10	-	•	-	-	•	· -	
TB2		Off the landing board	100	-	1	-	•	-	-	-	•	
TB3	Tug Boat + Barge	Lorries leave barge	100	-	5	-	•	-	•	-	•	For worst case 30 minutes scenario, TB1, TB2 &
TB4	rug Boat + Barge	Lorries back to barge	100	•	5	- T	•	-	-	-	-	TB3 have selected for assessment.
TB5		Lift on the landing board	98	-	1	- 1	-	-	-	-	-	
TB6		Idling for departure	99	-	5	- 1	-	-	-	-	· .	
						P			Level, Leq	127 4 6 2 4 6 6 7 6 7 6 7		
					1000	1444			Exceeda	nce, dB(A)) · _	

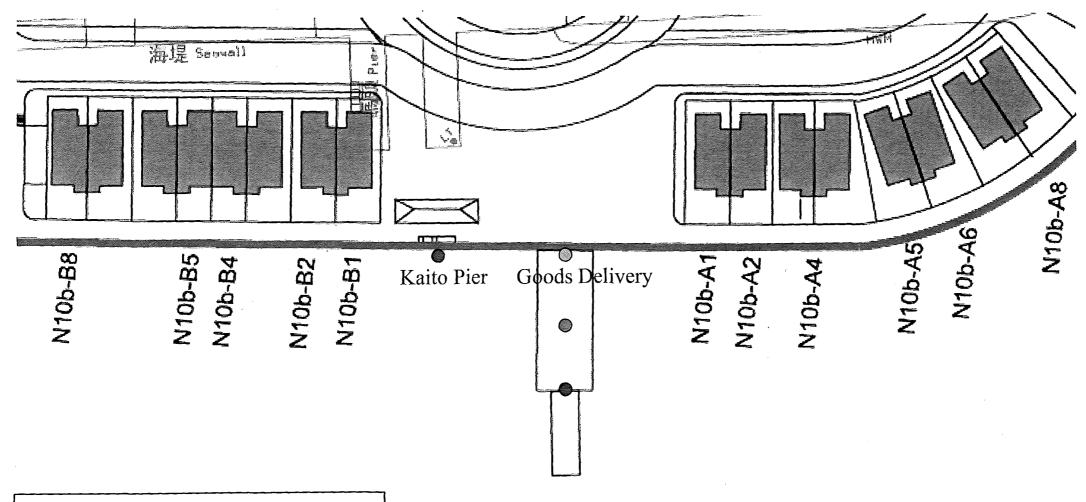
Case 2 Peng Chau Kaito, Mui Wo Kaito & Sand Barge + Truck sand loading

40.4	Description	Activities/Equipment	SWL,	Shortest	Worst operating	2,500	C	orrection, dE	(A)	963	Predicted	
Noise Source ID			dB(A)	separation distance (m)	time (min)	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)	Remark
PC1		Idlling - arrival	88	107	1	-49	-15	0	0	3	28	
PC2	Peng Chau Kaito	Idling	88	107	5	-49	-8	0	0	3	35	
°C3		Idlling - ready for departure	91	107	1	-49	-15	0	0	3	31	
dW1		Idlling - arrival	98	-	1	-	-	-	-	-	-	
/W2	Mui Wo Kaito	Idling	90	-	5	-	-	-	-	-		
MW3		Idlling - ready for departure	98	-	1			-	-	-	•	
SB1		Idling	101	-	1	-	-	-	-	-	•	
BB2		Extend Conveyor belt	99	-	1	- 1	-	-	-	-	•	
SB3	Sand Barge + Truck sand loading	Engine standby	94	-	20	- 1	-	-	-		•	No Nighttime operation
SB4		Truck idling + conveyor load sand into truck	103	-	9	-	-	 	-	-		
BB5		Relax conveyor + leave	102	-	1	-	-	-	•	-	•	
						P	redicted C	Verall Noise	Level, Leq	_{30min)} dB(A)	37	

Nighttime criterion (ANL-5), dB(A)

Nighttime criterion (ANL-5), dB(A)

Exceedance, dB(A)

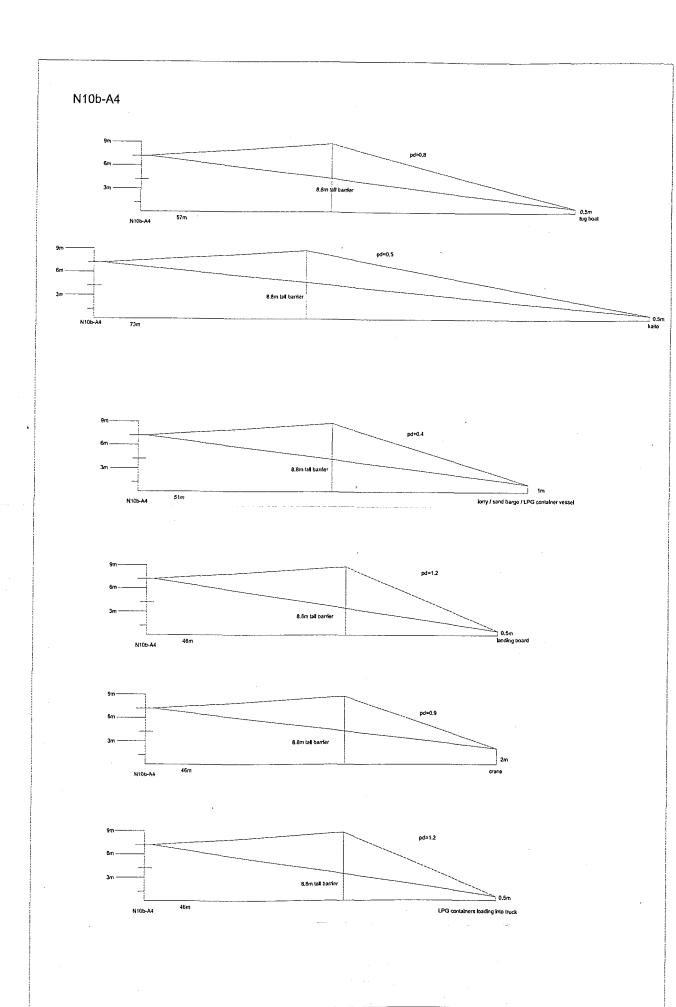

Exceedance, dB(A)

			SWL,	Shortest	Worst operating		C	orrection, dE	<u> </u>	å į	Predicted		Remark		
Noise Source ID	Description	Activities/Equipment	dB(A)	separation distance (m)	1 Sec. 1984 19 Sept.	Distance	Time	Screening	Mitigation	Facade	SPL, dB(A)		Remark		
PC1		Idlling - arrival	88	107	1	-49	-15	0	0	3	28				
PC2	Peng Chau Kaito	Idling	88	107	5	-49	-8	0	0	3	35				
PC3		Idlling - ready for departure	91	107	1	-49	-15	0	0	3	31				
MW1		Idlling - arrival	98	-	1	- 1	-	-	-		•				
MW2	Mui Wo Kaito	Idling	90	-	5	- 1	-	-	-	-	· 1				
MW3		Idlling - ready for departure	98	-	1		-	-	- 1	-	· 1				
LPG1		Idlling - arrival	93	-	2	-	-	-	- 1		- 1				
LPG2		Crane operation and LPG containers leave barge	112	-	1	- 1	-	 -			•				
PG3	LPG Container Vessel + LPG Containers	LPG containers loading into truck	95	-	1	- 1	-	-	- 1	_		No A	lighttime operation		
LPG4]	Idlling	91	-	5	- 1	-	-	- 1	-	-	NO N	No Nighttime operation		
LPG5		Crane operation and LPG containers back to barge	108	-	1		-	 	-	-	•				
LPG6		Idlling - ready for departure	105	-	2	- 1	-	-	-	-	-				
		9 (44)				P	redicted C	verall Noise	Level, Leq	30min)dB(A)	37				

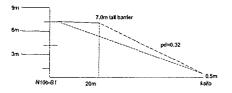
Mitigated (Barrier)

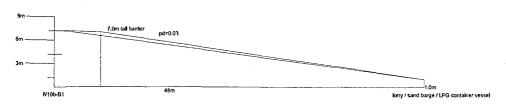
	time	Noise Impact, dB(A)	Exceedance	Noise Impact, dB(A)	Exceedance	Noise Impact, dB(A)	Exceedance
NSR	Criteria	Case 1	Case 1	Case 2	Case 2	Case 3	Case 3
N10b-B1	55	54	-	54	-	54	
N10b-B2	55	53	-	52		52	-
N10b-B4	55	54	-	49		47	-
N10b-B5	55	55	-	52	· -	52	
N10b-B8	55	.53	-	49	-	49	-
N10b-D1	55	55	-	55	-	55	
N10b-D5	55	50	-	50	-	50	-
N10b-D6	55	52	-	51	-	52	-
N10b-D8	55	53	-	52	-	52	
N10b-A1	55	51	<u>-</u>	49	-	52	-
N10b-A2	55	50	-	50	•	51	
N10b-A4		47	-	47	-	47	-
N10b-A5	55	55	-	50	-	50	-
N10b-A6		55	-	50	-	50	-
N10b-A8	55	53	-	48	-	48	-

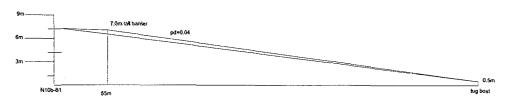
Nigh	ttime	Noise Impact, dB(A)	Exceedance	Noise Impact, dB(A)	Exceedance	Noise Impact, dB(A)	Exceedance
NSR	Criteria	Case 1	Case 1	Case 2	Case 2	Case 3	Case 3
N10b-B1	45	42		43		43	-
N10b-B2	45	38		39	•	39	-
N10b-B4	45	34	•	35	-	35	-
N10b-B5		42		43	-	43	-
N10b-B8	45	39	-	40	-	40	•
N10b-D1	45	38		40	<u> </u>	40	-
N10b-D5		35		36	<u> </u>	36	-
N10b-D6		39		39	<u>-</u>	39	-
N10b-D8		40	<u>-</u>	40	-	40	-
N10b-A1	45	33		33		33	
N10b-A2		32	-	32	<u> </u>	32	-
N10b-A4		30		30		30	-
N10b-A5	45	34		34	<u>-</u>	34	-
N10b-A6		38	-	38	-	38	-
V10b-A8	45	37	-	37		37	

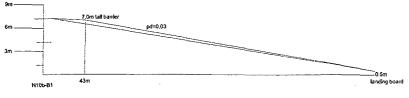


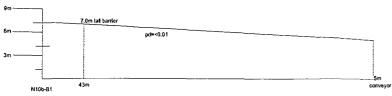
Legend

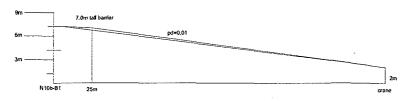

- Proposed relocated location of fixed noise sources from Pang Chau Kai To / Mui Wo Kai To
- Proposed relocated location of fixed noise sources from operation of landing board / conveyor / crane / loading and unloading of LPG containers into truck
- Proposed relocated location of fixed noise sources from loading and unloading of lorry / LPG container vessel / sand barge
- Proposed relocated location of fixed noise sources from tug boat

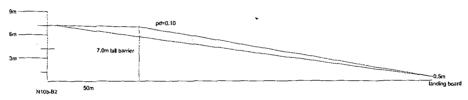

N10b-A1 41m N10b-A1 N10b-A1 N10b-A1 LPG containers loading Into truck

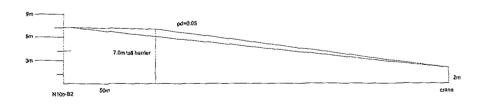

N10b-A2 N10b-A2 N106-A2 N10b-A2

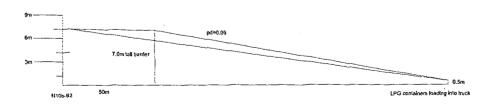


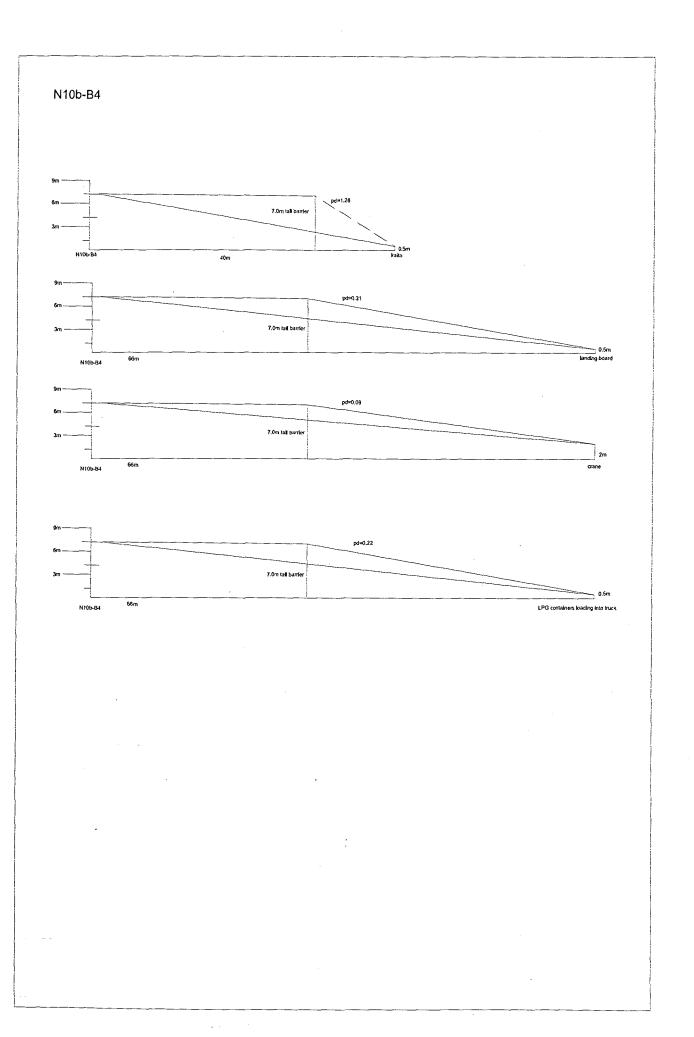









9m 7.0m lat barrier pd=0,75 3m 25m kalfo



0

E ...

•

Ĭ

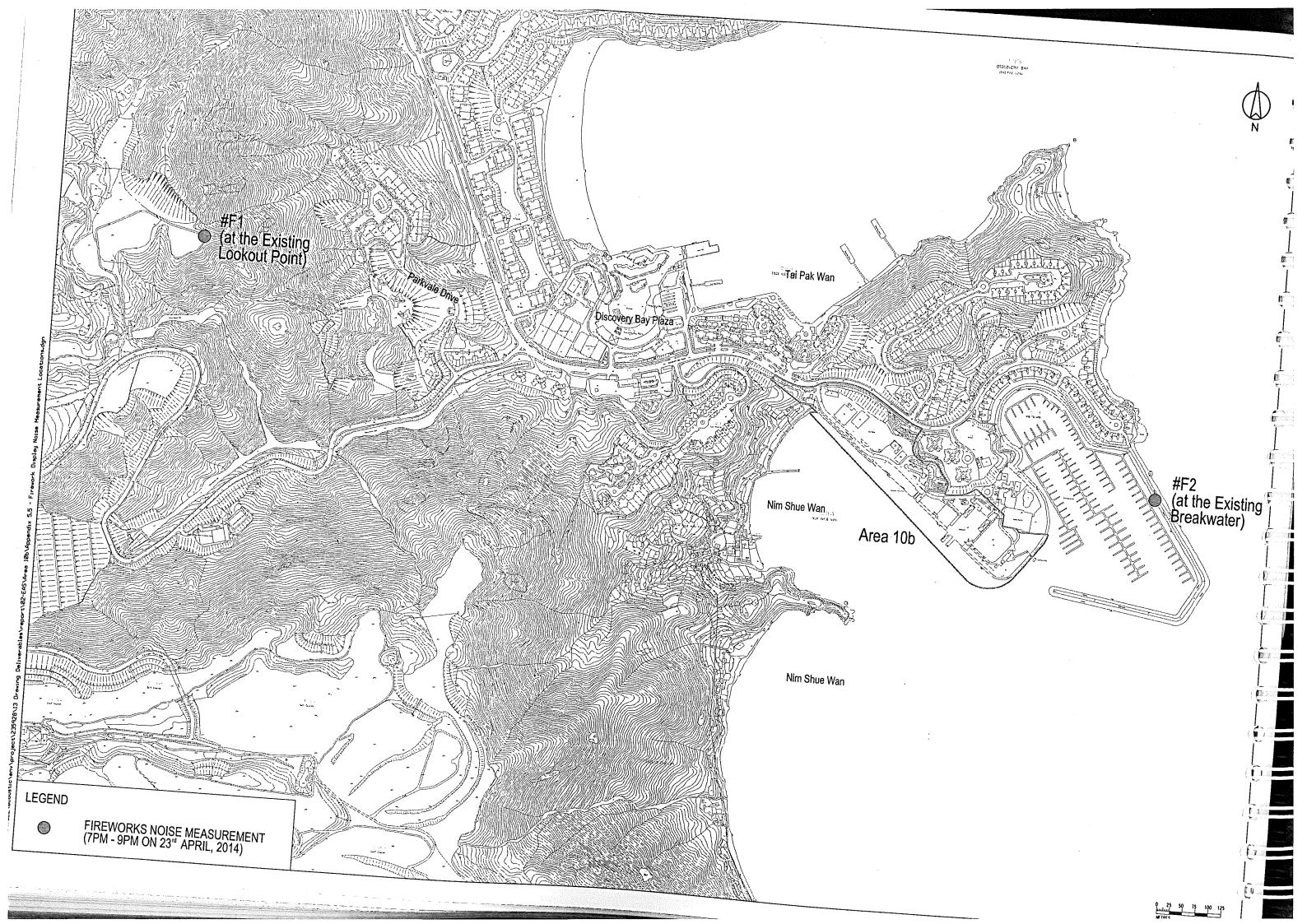
.

_

]] —

36 .l

j j


. . . .

Î)

حم

Appendix 5.6

Firework Display Noise Measurement Location

Appendix 5.7

Firework Display Noise Result Summary Project:

Discovery Bay EAS

Job No.:

235928

Title:

Firework Display Noise Assessment

Subtitle:

Firework Display Noise Measurement Results

Noise Level	Location F1	Location F2
Measured Noise Level, Leq (15 min) , dB(A) ^[3]	52	53
Background Noise Level (Before firework display), Leq (15 min) , dB(A) [1]	50	50
Background Noise Level (After firework display), Leq (15 min) , dB(A) ^[2]	48	50
Average Background Noise Level, dB(A) ^[3]	49	50
Facade correction [4]	3	
Corrected Noise Level, Leq (15 min) , dB(A)	52	53
Noise Criterion ^[5]	55	
Exceedance, dB(A)	-	-

Note:

- [1] Background noise level was measured 15 minutes before the firework display.
- [2] Background noise level was measured 15 minutes after the firework display.
- [3] Logarithmic average of [1] and [2]
- [4] Facade correction has been considered in noise calculation.
- [5] The firework display noise criteria is referenced to Environmental Impact Assessment Construction of an International Theme Park in Penny's Bay of North Lantau together with its Essential Associated Infrastructures (AEIAR 0323/2000) and Hong Kong International Theme Parks Limited Air Quality and Noise Monitoring During Fireworks Dress Rehearsal: Monitoring Report.

Appendix 6.1

Legislation and Standards for Water Quality Assessment

Legislation and Standards for Water Quality Assessment

The relevant legislations, standards and guidelines applicable to present study for the assessment of water quality impacts include:

- Water Pollution Control Ordinance (WPCO) CAP 358;
- Technical Memorandum for Effluents Discharged into Drainage and Sewerage Systems Inland and Coastal Waters (TM-DSS);
- Hong Kong Planning Standards and Guidelines (HKPSG); and
- ProPECC PN 1/94 "Construction Site Drainage"

Water Pollution Control Ordinance, CAP 358

The Project is located in the Southern Water Control Zone (WCZ) under the Water Pollution Control Ordinance (WPCO) (CAP 358) and the corresponding WQOs are summarised in below table.

Table A6.1: Water quality objectives for Southern Water Control Zones

Parameters	Objectives	Sub-Zone
	Waste discharges shall cause no objectionable odours or discolouration of the water.	
	Tarry residues, floating wood, articles made of glass, plastic, rubber or of any other substance should be absent.	
	Mineral oil should not be visible on the surface. Surfactants should not give rise to a lasting foam.	
Aesthetic Appearance	There should be no recognisable sewage-derived debris.	Whole zone
	Floating, submerged and semi-submerged objects of a size likely to interfere with the free movement of vessels, or cause damage to vessels, should be absent.	·
,	Waste discharges shall not cause the water to contain substances which settle to form objectionable deposits.	
Bacteria	Escherichia coli < 610/100 mL, geometric mean in one calendar year.	Secondary Contact, Recreation Subzones and Fish Culture Subzones
Dacteria	Escherichia coli < 180/100 mL, geometric mean from March to October inclusive in one calendar year. Samples at least 3 times in a calendar month at intervals of between 3 and 14 days.	Bathing Beach Subzones
Dissolved Oxygen	> 4 mg/L at depth-averaged for 90% of the samples > 2 mg/L within 2m of the seabed for 90% of the	Marine waters excepting Fish Culture

Parameters	Objectives	Sub-Zone
	samples	Subzones
	> 5 mg/L at depth averaged for 90% of the samples > 2 mg/L within 2 metres of the seabed for 90% of the sample.	Fish Culture Subzones
	> 4 mg/L	Inland waters of the Zone
рН	In the range of 6.5 – 8.5 Change due to waste discharge < 0.2	Marine waters excepting Bathing Beach Subzones; Mui Wo (A), Mui Wo (B), Miu Wo (C), Mui Wo (E) and Mui Wo (F) Subzones.
	In the range of 6.0 – 9.0	Mui Wo (D) Sub-zone
	Change due to waste discharge < 0.2	and other inland waters.
	In the range of 6.0 – 9.0 for 90% of samples Change due to waste discharge < 0.5	Bathing Beach Subzones.
Temperature	Change due to waste discharge < 2.0 degC	Whole zone
Salinity	Change due to waste discharges < 10% of ambient levels	Whole zone
	Change due to waste discharge < 30% of ambient levels	Marine waters
Suspended solids	< 20 mg/L, annual median	Mui Wo (A), Mui Wo (B), Mui Wo (C), Mui Wo (E) and Mui Wo (F) Subzones.
	< 25 mg/L, annual median	Mui Wo (D) Subzone and other inland waters.
Unionized Ammonia (UIA)	< 0.021 mg/L, annual arithmetic mean	Whole zone
Nutrient	Shall not cause excessive or nuisance algal growth Total inorganic nitrogen (TIN) < 0.1 mg/L, annual mean of depth averaged	Marine waters
5-Day Biochemical Oxygen Demand (BOD ₅)	5-Day Biochemical Oxygen Demand < 5 mg/L	
Chemical Oxygen Demand (COD)	< 30mg/L	Inland waters of the Zone
· Dangerous Substances	Waste discharges shall not cause the concentrations of dangerous substances in marine waters to attain such levels as to produce significant toxic effects in humans, fish or any other aquatic organisms, with due regard to biologically cumulative effects in food chains and to toxicant interactions with each other.	Whole zone

Parameters	Objectives	Sub-Zone
	Waste discharges of dangerous substances shall not put a risk to any beneficial uses of the aquatic environment.	Whole zone

Technical Memorandum for Effluents Discharge into Drainage and Sewerage Systems, Inland & Coastal Waters

Apart from the WQOs, Annex 1 of CAP358AK also specifies the limits to control the physical, chemical and microbial parameters for effluent discharges into drainage and sewage system at both inland and coastal waters under the TM-DSS. The discharge limits vary with the effluent flowrates and the sewage from the Project (treated after sewage treatment works) should comply with the standards for effluent discharged into marine water. The effluent discharge standards are presented in tables below.

Table A6.2: Standards for effluents discharged into the marine waters of Southern

WCZ (in mg/L unless otherwise indicated)

Flow rate (m³/day)	≤ 10	>10 and ≤200	>200 and ≤400	>400 and ≤600	>600 and ≤800	>800 and ≤1000	>1000 and ≤1500	>1500 and ≤2000	>2000 and ≤3000	>3000 and ≤4000	>4000 and ≤5000	>5000 and ≤6000
pH (pH units)	6-10	6-10	6-10	6-10	6-10	6-10	6-10	6-10	6-10	6-10	6-10	6-10
Temperature (degC)	45	45	45	45	45	45	45	45	45	45	45	45
Colour (lovibond units) (25mm cell length)	4	1	1	1	1	1	1	1	1	1	1	1
Suspended solids	500	500	500	300	200	200	100	100	50	50	40	30
BOD	500	500	500	300	200	200	100	100	50	50	40	30
COD	1000	1000	1000	700	500	400	300	200	150	100	80	80
Oil & Grease	50	50	50	30	25	20	20	20	20	20	20	20
Iron	20	15	13	10	7	6	4	3	2	1.5	1.2	1
Boron	6	_ 5	4	3.5	2.5	2	1.5	1	0.7	0.5	0.4	0.3
Barium	6	5	4	3.5	2.5	2	1.5	1	0.7	0.5	0.4	0.3
Mercury	0.1	0.1	0.1	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Cadmium	0.1	0.1	0.1	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Other toxic metals individually	2	1.5	1.2	0.8	0.6	0.5	0.32	0.24	0.16	0.12	0.1	0.1
Total toxic metals	4	3	2.4	1.6	1.2	1	0.64	0.48	0.32	0.24	0.2	0.14
Cyanide	1	0.5	0.5	0.5	0.4	0.3	0.2	0.15	0.1	0.08	0.06	0.04
Phenols	0.5	0.5	0.5	0.3	0.25	0.2	0.13	0.1	0.1	0.1	0.1	0.1

Flow rate (m³/day)	≤ 10	>10 and ≤200	>200 and ≤400	>400 and ≤600	>600 and ≤800	>800 and ≤1000	>1000 and ≤1500	>1500 and ≤2000	and	>3000 and ≤4000	>4000 and ≤5000	>5000 and ≤6000
Sulphide	5	5	5	5	5	5	2.5	2.5	1.5	1	1	0.5
Total residual chlorine	1	1	1	1	1	1	1	1	1	1	1	1
Total nitrogen	100	100	80	80	80	80	50	50	50	50	50	50
Total phosphorus	10	10	8	8	8	8	5	5	5	5	5	5
Surfactants (total)	30	20	20	20	15	15	15	15	15	15	15	15
E. coli (count/100ml)	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000

Hong Kong Planning Standards and Guidelines

Chapter 9 of the Hong Kong Planning Standards and Guidelines (HKPSG) outlines the environmental requirements that need to be considered in land use planning. The recommended guidelines, standards and guidance cover the selection of suitable locations for the developments and sensitive uses, provision of environmental facilities, and design, layout, phasing and operational controls to minimise adverse environmental impacts. It also lists out environmental factors that influence land use planning and recommends buffer distances for land uses.

ProPECC PN 1/94 "Construction Site Drainage"

The Practice Note for Professional Persons (ProPECC Note PN1/94) on Construction Site Drainage provides guidelines for the handling and disposal of construction discharges. It is applicable to this study for the control of site runoff and wastewater generated during the construction phase. The types of discharges from construction sites outlined in the ProPECC Note PN1/94 include:

- Surface runoff;
- Groundwater;
- Boring and drilling water;
- Wastewater from concrete batching plant;
- Wheel washing water;
- Bentonite slurries;
- Water for testing and sterilization of water retaining structures and water pipes;
- Wastewater from building construction and site facilities; and
- Acid cleaning, etching and pickling wastewater.

Appendix 6.2

Standard Practice for Site Drainage

Standard Practice for Site Drainage

Site Runoff

In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN 1/94), best management practices should be implemented as far as practicable as below:

- At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities.
- The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates.
- The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction.
- The design of temporary on-site drainage should prevent runoff going through site surface, construction machinery and equipment in order to avoid or minimize polluted runoff. Sedimentation tanks with sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped.
- Construction works should be programmed to minimize surface excavation works during the rainy seasons (April to September). All exposed earth areas should be completed and vegetated as soon as possible after earthworks have been completed. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.
- All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rainstorms. Deposited silt and grit should be removed regularly and disposed of by spreading evenly over stable, vegetated areas.
- All open stockpiles of construction materials (for example, aggregates, sand and fill material) should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.
- Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or

235928 | Final | November 2015

debris being washed into the drainage system and storm runoff being directed into foul sewers.

- Precautions to be taken at any time of year when rainstorms are likely, actions
 to be taken when a rainstorm is imminent or forecasted, and actions to be taken
 during or after rainstorms are summarized in Appendix A2 of ProPECC PN 1/94.
 Particular attention should be paid to the control of silty surface runoff during
 storm events.
- All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities should be provided at every construction site exit where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.
- Oil interceptors should be provided in the drainage system downstream of any
 oil/fuel pollution sources. The oil interceptors should be emptied and cleaned
 regularly to prevent the release of oil and grease into the storm water drainage
 system after accidental spillage. A bypass should be provided for the oil
 interceptors to prevent flushing during heavy rain.
- Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts.
- All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive receivers nearby.
- Regular environmental audit on the construction site should be carried out in order to prevent any malpractices. Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the water bodies, marsh and ponds.

By adopting the best management practices, it is anticipated that the impacts of general site operation will be reduced to acceptable levels before discharges. The details of best management practices will be highly dependent to actual site condition and Contractor shall apply for a discharge license under WPCO.

Sewage from Workforce

Mitigation measures to manage the sewage from workforce include the following:

- Portable chemical toilets and sewage holding tanks should be provided for handling the construction sewage generated by the workforce.
- A licensed contractor should be employed to provide appropriate and adequate portable toilets to cater 0.15m3/day/employed population and be responsible for appropriate disposal and maintenance.

- Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment during the construction phase of the Project.
- Regular environmental audit on the construction site should be conducted in order to provide an effective control of any malpractices and achieve continual improvement of environmental performance on site.

Appendix 6.3

Preliminary Water Quality Assessment

1 Introduction

- 1.1.1.1 This technical note is prepared for supporting the Section 12A Application No. Y/I-DB/3 of rezoning the permissible use from "Other Specified Use" ("OU") and "Government, Institution and Community" for various supporting service uses to "OU" (Residential and various supporting service uses) R(C)13 at Area 10b. It summarises the results of preliminary water quality impact assessment for the proposed sewage treatment works (STW) in Area 10b to the water sensitive receivers during operational phase.
- 1.1.1.2 The proposed STW will be established to receive and treat the sewage generated from Area 10b which will accommodate a total of about 2,813 additional population. The Average Dry Weather Flow (ADWF) of the proposed STW is approximately 1,100 m³/day. Nitrogen removal and disinfection will be implemented into the proposed STW. As discussed in Study on Sewerage accompanying the Planning Statement of Area 10b, the treated effluent from the proposed STW would be conveyed to a booster pump system, and finally discharged via a submarine outfall. Mitigation measures will be proposed as necessary to achieve compliance of Water Quality Objectives (WQOs).

2 Baseline Condition

2.1 Marine Water Quality

2.1.1.1 The WQOs include various parameters, which describe the physical, chemical and biological properties of the marine environment. **Table 2.1** summarises the key baseline conditions of SS (suspended solids), *E. coli*, UIA (Un-ionized Ammonia Nitrogen) and TIN (Total Inorganic Nitrogen) at EPD's marine monitoring location SM10 from year 2005 to 2014. The annual average of the baseline condition at SM10 from year 2005 to 2014 is presented in **Appendix A**. It should be noted that the baseline TIN level (0.35 mg/L) already exceeds the WQO of 0.1 mg/L in Southern Water Control Zone (WCZ), due to high TIN level in the background of Pearl River estuary¹.

Table 2.1 Baseline condition of EPD's marine monitoring station SM10 from year 2005 to 2014

(mg/L)		(mg/L)	0.25
6.92	8	0.0042	<u>0.35</u>

Notes:

¹ EPD Marine Water Quality in Hong Kong in 2014.

- [1] Unless otherwise specified, data presented are depth averaged and are the annual arithmetic mean except for *E. coli* which is in geometric mean.
- [2] Underlined indicates occurrence of non-compliance with that parameter of WQO.

3 Water Sensitive Receivers

- 3.1.1.1 Water sensitive receivers (WSRs) have been identified and are shown in **Figure 3.1**. The treated effluent from the STW in Area 10b would be conveyed to the booster pump system, and eventually discharged to the marine outfall near Nim Shue Wan.
- 3.1.1.2 The distances between the discharge point of the marine outfall and WSRs are listed in **Table 3.1**. The nearest WSR is Hai Tei Wan Marina (WSR 05) at 320m.

Table 3.1 Description of water sensitive receivers within 2500 meters

WSR	Name	Description	Distance from the discharge location (m)	
WSR01	Discovery Bay Reservoir	Primary reservoir for flushing, located upstream of the potential development areas	_[1]	
WSR02	Discovery Bay Reservoir Spillway and Tributaries	Spillway from Discovery Bay Reservoir and the tributaries, drainage runs along Discovery Valley Road and downstream to Tsoi Yuen Wan	_[1]	
WSR03	Nim Shue Wan Stream	Natural stream downstream from the existing golf course to Nim Shue Wan	_(1)_	
WSR04	Tai Pak Wan	Non-gazetted beach downstream to Discovery Bay Reservoir Spillway	2500	
WSR05	Hai Tei Wan Marina	Marina at Hai Tei Wan next to Discovery Bay Road	320	
WSR06 Nim Shue Wan		Nim Shue Wan Beach	650	
WSR07	Tai Pak Tsui Peninsula Coastal Protection Area (CPA)	Protected natural shoreline at north of Tai Pak Tsui Peninsula	1600	

Note:

[1] Inland WSR.

1

4 Assessment Methodology

4.1 Effluent Discharge Standards

4.1.1.1 Table 4.1 shows the effluent discharge standards of the proposed STW.

Table 4.1 Effluent discharge standards of the proposed STW

Parameters	Discharge standard provided by sub-contractor (Flow rate estimated as 690 m³/day)
pН	6-10
Temperature	· < 30°C
Colour	< 1 lovibond units
Suspended Solids (SS)	30 mg/L
5-Day Biochemical Oxygen Demand (BOD ₅)	20 mg/L
Chemical Oxygen Demand (COD)	< 80 mg/L
Oil & Grease	< 10 mg/L
Total phosphorus	2 mg/L
Ammonia Nitrogen	8 mg/L
Nitrate + nitrite nitrogen	12 mg/L
Surfactants	< 15 mg/L
E. coli	10 count/100ml

Note:

4.2 WQOs in Southern WCZ

4.2.1.1 **Table 4.2** shows the criteria of SS, *E. coli*, UIA and TIN under WQOs in Southern Water Control Zone. As discussed in **Section 2**, the baseline TIN level has already exceeded the WQO criterion of 0.1 mg/L.

^[1] Mercury, Cadmium, Cyanide, Phenols, Sulphide, Sulphate, Chloride, Fluoride, Iron, Boron, Barium and other toxic metals are not the major pollutants in the domestic sewage and are excluded in the comparison.

Table 4.2 WOOs Criteria in Southern WCZ

8.99	180/610[1]	0.021	0.1
SS ^[2]	E. coli	UIA	TIN
(mg/L)	(counts/100ml)	(mg/L)	(mg/L)

Note:

4.3 Design of Proposed Marine Outfall

4.3.1.1 **Table 4.3** shows the tentative details of proposed marine outfall. These assumptions would be further refined and developed during the detailed design stage.

Table 4.3 Tentative design details for the diffuser in the proposed marine outfall

Parameters	Description
No. of discharge ports in the diffuser	8
Design discharge speed at the port	1 m/s
Length of diffuser base	10m
Configuration of discharge ports	Each discharge ports are distributed evenly on the diffuser line. The ports are pointing horizontally with alternating directions.
Location of the diffuser/discharge outfall	Approximately 300m offshore[1]
Depth of the discharge port	4.5m from water surface (at sea bottom)

Note:

^[1] The criteria for *E. coli* are 610 counts/100ml for Secondary Contact Recreational Subzones, and 180 counts/100ml for bathing beaches in wet season.

^[2] SS criteria is established based on WQO that water discharge shall not cause the natural ambient level to be raised by 30% for marine water WCZ.

^[1] The outfall location is also tentatively set at a location with a water depth of approximately 4.5m. The location would be further refined during the detailed design stage.

- 4.4 Modelling Scenario
- 4.4.1.1 The effluent dispersion scenarios are simulated by a near-field model, CORMIX. The key inputs to the CORMIX include outfall configuration, ambient current speed, vertical density profile and effluent flow rate.
- An 8 port submarine diffuser is considered at this stage. Hence, the discharge will be in alternating directions with both co-flow and counter-flow conditions. Module CORMIX 2 is adopted for simulation.
- 4.4.1.3 Ambient velocities at 0.013 m/s (10 percentile), 0.042 m/s (50 percentile) and 0.076 m/s (90 percentile) have been estimated from the approved Delft 3D modelling results from HATS Stage 2A EIA (AEIAR-121/2008), which are presented in **Appendix B**.
- 4.4.1.4 CORMIX is applicable for uni-directional ambient flow simulation. To cater for the different tidal conditions, the following scenarios have been modelled under CORMIX:
 - The 90 percentile of ambient velocity of 0.076 m/s. Under this scenario, the effluent discharge flow is in the same direction as the ambient flow. The pollutant plume is then flowing towards the WSR by the maximum ambient flow.
 - The 50 percentile of ambient velocity of 0.042 m/s. Under this scenario, the effluent discharge flow is in the same direction as the ambient flow. The pollutant plume is then flowing towards the WSR by the average ambient flow.
 - The 10 percentile of ambient velocity of 0.013 m/s. Under this scenario, the ambient velocity is near stagnant. The dispersion of the plume is dominated by diffusion.
- 4.4.1.5 **Table 4.4** presents the modelling parameters of the worst case scenario for ambient in coflow situation.
- 4.4.1.6 Sensitivity test on different values for angle between ambient flow and diffuser line has been conducted. It is found that the dilution factor does not change significantly. Given high dilution factors (300-760) can be achieved as shown in **Table 5.2**, typical scenario with ambient flow at 90 deg of diffuser line has been adopted.

Table 4.4 Modelling scenario and corresponding parameters for the model

Pa	rameter	Scen	ario			
	Season	Dry	Wet			
Effluent Discharge	Total Discharge Flow Rate	1 m/s ^[1] ·1100m³/day				
Parameters	Concentration of Effluent at Peak Flow	[1 NIII Nt. 0 /T /T IT A [2], () 40.4 /T)				
	Effluent Density	1000 kg/m				
	Discharge height above bottom	0 m (sea bottom)				
Ambient Conditions Ambient Velocity		Ambient flow of 10, 50 and 90 percentile at 0.013, 0.042 a 0.076 m/s respectively (See Appendix B) with 90 deg of diffuser line				
	Ambient Density [5]	Surface 1,022 kg/m³; Surface 1,017 kg/ Bottom 1,022 kg/m³ Bottom 1,017.7 kg/				
	Water Depth	4.5 1	n ^[6]			
	Wind speed	2 m/s ^[4]				

Note:

- [1] Reference to the designed effluent velocity of the proposed marine outfall discharging to sea.
- [2] UIA is estimated by multiplying a percentage factor to NH3-N. This factor depends on temperature and pH. The average temp and pH from EPD water quality monitoring stations in Southern WCZ are 23.8°C and 8.0 respectively. According to the "Aqueous Ammonia Equilibrium- Tabulation of Percent Unionized Ammonia" from USEPA, the conversion factor is 5.3%.
- [3] TIN concentration is the sum of the concentration of NH₃-N, NO₂-N and NO₃-N (see Table 4.1).
- [4] CORMIX's recommended value for conservative design condition.
- [5] Ambient density is estimated from the EPD water quality monitoring station SM10 from year 2005-2014.
- [6] Water depth at Discovery Bay are obtained from nautical chart in Hong Kong, published by the Hydrographic Office, Marine Department of HKSAR Government (Appendix C).

- 4.5 Comparison with the Proposed and Existing STW in Southern WCZ
- It can be seen from **Table 4.5** that the proposed STW has adopted the same treatment technology as the South Lantau STW (SLSTW). Although the flow rate for the proposed STW is much lower than that in the SLSTW, the concentration of E. coli has been purposefully reduced to 10 counts/100ml which is significantly lower than that of 1,000 counts/100ml in the SLSTW. In fact, the proposed discharge limit of 10 counts/100ml is even lower than the WQO and hence any risk of human contact has been proactively addressed. In terms of TIN, it can also be noted that the discharge from the proposed STW would reach a concentration of 20mg/L which is also lower than the 30 mg/L as adopted in the SLSTW. It can therefore be seen that the discharge limit in the proposed STW for Area 10b is by all aspects much better than that adopted in the SLSTW which is also discharging into the sea area off South Lantau.

Table 4.5 Comparison of Effluent Discharge Standards against South Lantau EIA

Parameters	Present Study (for Area 10b)	South Lantau EIA ^[1]
Treatment technology	MBR	MBR
Flow Rate: m3/day	1,100	5,800
NH3-N: mg/L	8	Not provided in EIA
TIN: mg/L	20	30
TP: mg/L	2	Not provided in EIA
SS: mg/L	30	30
E. coli: counts/100ml	10	1,000

[1] Application No.: EIA-247/2016

Apart from the planned STW, the MBR technology is also comparable to the existing sewage treatment technology adopted on South Lantau and its surrounding outlying islands. The MBR technology is composed of activated sludge treatment and microfiltration/ultrafiltration which can be classified as secondary treatment level. As shown in Figure 1, the majority of the existing STWs on South Lantau and its surrounding

outlying islands are implementing secondary treatment level. Therefore, the adopted MBR is also consistent with the existing sewage treatment technology in South Lantau.

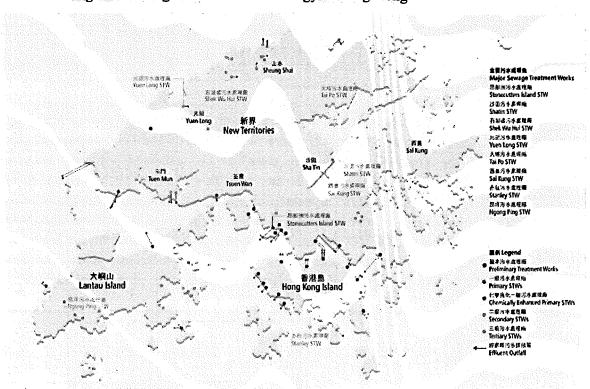


Figure 1 Sewage Treatment Technology in Hong Kong

[1] DSD Sustainability Report 2015-16

5 Evaluation of Impacts

5.1.1.1 Table 5.1 shows the dilution factors for SS and UIA required to meet the WQOs in marine waters. Since the E. coli level of treated effluent has already met the WQO criteria, it is not included in the assessment. The calculation of dilution factor is based on Equation 5.1. The WQO criteria can be complied if the predicted dilution factor at the WSRs is higher than the required dilution factor presented in Table 5.1.

Table 5.1 Dilution factors for SS and UIA to meet the WQO criteria

	SS (mg/L)	UIA (mg/L)	Remark
Criteria/Target Limit of Conc. (C _{criteria})	8.99	0.021	See Table 4.2
Baseline Conc. (C _{baseline})	6.92	0.004	See Table 2.1
Effluent Discharge Conc. (C _{effluent})	30	0.424	See Table 4.3
Dilution Factor to Meet the Criteria	11	25	Calculation based on Equation 5.1

Note:

As a sample calculation, the required dilution factor for the SS criterion would be $(30.00 - 6.92)/(8.99 - 6.92) \approx 11$.

$$DF = \frac{c_{\text{effluent}} - c_{\text{baseline}}}{c_{\text{criteria}} - c_{\text{baseline}}}$$

Equation 5.1

where

 C_{effluent} is the effluent concentration at the discharge point.

 C_{baseline} is the baseline concentration at the WSR. C_{criteria} is the criteria/ target limit of concentration.

Table 5.2 shows the dilution factor and predicted vertical thickness of sewage plume for the simulated scenario at 320 m of the closest WSR (WSR 05 Hai Tei Wan Marina). For dry season, the simulated scenarios are classified as submerged positively buoyant multiport diffuser discharge in uniform density layer (flow class MU1V, MU1H and MU8 according to CORMIX Manual). For wet season, the simulated scenarios are classified as deeply submerged test for plume trapping in a linearly stratified layer (flow class MS8 and MS5 according to CORMIX Manual). The details of CORMIX outputs are presented in Appendix D. Based on the modelling result, the lowest predicted dilution factor can be achieved is 306. The predicted vertical thickness of sewage plume is about 0.6-1m near the surface.

Table 5.2 Predicted dilution factors and plume vertical thickness at the WSR05 (i.e.

320 m from discharge point)

340	320 m from discharge point)						
Season	Ambient flow (m/s)	Dilution Factor	Plume Vertical Thickness (m)				
	0.013	480	0.59				
Dry	0.042	756	0.98				
	0.076	650	0.77				
	0.013	306	0.47				
Wet	0.042	623	0.57				
	0.076	700	0.63				

5.1.1.3 Since the predicted dilution factor at the nearest WSR is higher than the required dilution presented in Table 5.1, it is anticipated that SS and UIA level would comply with the WQO criteria at all marine based WSRs. The summary of compliance for different water quality parameters is presented in Table 5.3. As regards the sedimentation, since the plume according to the model is above the seabed there would be no direct deposit of suspended solid to the bottom. Even if it is assumed that the plume can hit the seabed and other conditions remain unchanged, the increase in the concentration of suspended solid would be <0.1 mg/L (=30/306) which is within the natural fluctuation of the annual concentration of suspended solid. It is thus anticipated that the sedimentation due to the treated effluent would be insignificant.

Table 5.3 Summary of compliance for different water quality parameters inside the sewage plume for WSR 05

Season	Ambient flow	mbient flow SS (mg/L)		E.coli (mg/L)		UIA (mg/L)			TIN (mg/L)				
	(m/s)	Predicted Value	Criteria	Compliance	Predicted Value	Criteria	Compliance	Predicted Value	Criteria	Compliance	Predicted Value	Criteria	Compliance
	0.013	6.97	8.99	Yes	8	610	Yes	0.005	0.021	Yes	0.391	0.1	No [1]
Dry	0.042	6.95	8.99	Yes	8	610	Yes	0.005	0.021	Yes	0.376	0.1	No [1]
	0.076	6.96	8.99	Yes	8	610	Yes	0.005	0.021	Yes	0.380	0.1	No ^[1]
	0.013	7.00	8.99	Yes	8	610	Yes	0.006	0.021	Yes	0.414	0.1	No [1]
Wet	0.042	6.96	8.99	Yes	8	610	Yes	0.005	0.021	Yes	0.382	0.1	No ^[1]
	0.076	6.95	8.99	Yes	8	610	Yes	0.005	0.021	Yes	0.378	0.1	No ^[1]

Note:

^[1] Baseline TIN level already exceeds the WQO criterion.

5.1.1.4 Using Equation 5.1 and the effluent standards in Section 4.1, the predicted levels of total inorganic nitrogen (TIN) inside the sewage plume with predicted dilution factors are presented in Table 5.4.

Table 5.4 Predicted nitrogen levels at the WSR05 (i.e. 320 m from discharge point)

Season	Ambient flow (m/s)	TIN, inside the sewage plume (mg/L)	Depth averaged TIN (mg/L)
	0.013	0.391	0.355
Dry	0.042	0.376	0.356
	0.076	0.380	0.355
	0.013	0.414	0.357
Wet	0.042	0.382	0.354
	0.076	0.378	0.354

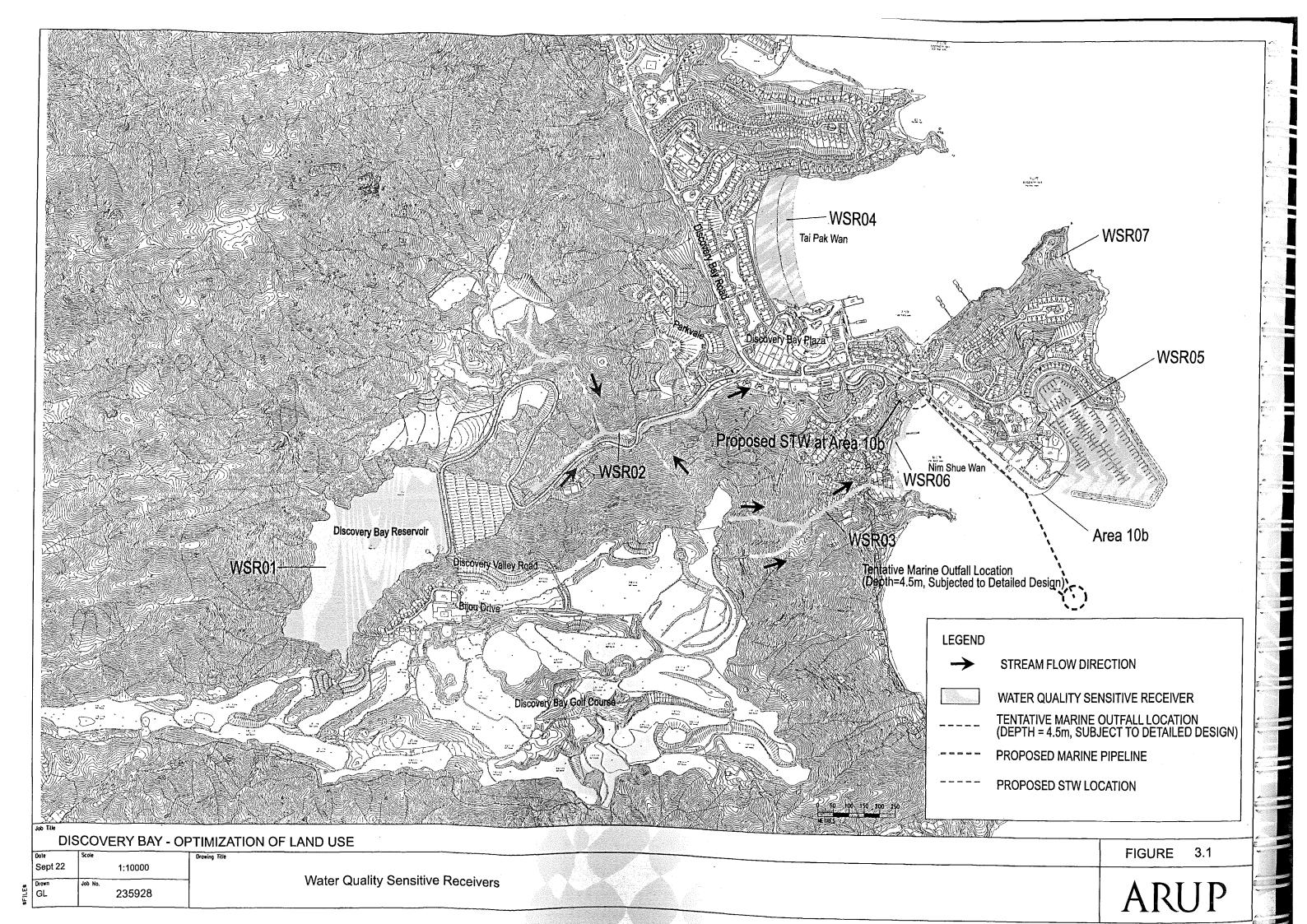
Note:

As a sample calculation for the first scenario, the depth averaged TIN = $0.391 \times (0.59/4.5) + 0.35 \times (1-0.59/4.5) = 0.355 \text{ mg/L}$.

- 5.1.1.5 The predicted value of TIN inside the sewage plume exceeds the depth averaged baseline value of 0.35 mg/L at the nearest WSR 05 (Hai Tei Wan Marina). However, since the predicted sewage plume thickness is thin (0.6-1m out of 4.5m water depth), the treated effluent slightly increases the depth averaged TIN by about 1-2% from the baseline value and thus is considered to be not significant.
- According to Section 3.1.1.2, the nearest WSR is the Hai Tei Wan Marina at approximately 320m from the discharge point. The predicted increase in TIN (in depth-averaged as per WQO) between the with and without the proposed STW scenarios is about 0.007 mg/L. Taking into account of the baseline condition of 0.35mg/L, the percentage of increase is only 2 %. Table 5.5 summarized the comparison at the Hai Tei Wan Marina. Compared with the relevant WSRs considered in the South Lantau EIA in which the increase in depth-averaged TIN is up to 33% (e.g. Tong Fuk Beach SR11: 33% in dry season and 12.5% in wet season), the increase in depth-averaged TIN due to the project is not significant.

Table 5.5 Predicted depth-averaged TIN level in the worst case scenario

WOO		TIN (mg/L)	
WSR	Without Project	With Project	% Increase
Hai Tei Wan Marina [1]	0.35	0.357	2


[1] Water Depth = approx. 4.5 m

- 5.1.1.7 Besides, an analysis on the TIN concentration within the effluent plume in addition to the depth-averaged one is also carried out. Compared with the baseline TIN condition of 0.35 mg/L, the preliminary water quality assessment showed that the increase of TIN within the plume at the nearest WSR (Hai Tei Wan Marina) is up to 0.064 mg/L or 18.3% during wet season when the ambient flow is 0.013 m/s. This figure, compared with the aforementioned 33% increase in depth-averaged TIN from the South Lantau EIA is more or less in the same order.
- 5.1.1.8 Based on the analysis on the depth-averaged TIN and TIN within the effluent plume, it can thus be seen that the proposed treatment level of the proposed STW in terms of TIN has ensured that the elevation of TIN at WSRs is very low as compared to other approved EIA Report.
- 5.1.1.9 In addition, the flow in the CORMIX is assumed to be always in the same direction towards the WSR. In reality, the flow direction will change during ebb and flood tides. So the effluent plume will have half of the time to flow in one direction reaching the WSR, and the other half of the time to flow in the other direction away from the WSR. So indeed the TIN concentration at the WSR would be further reduced. Results from this Technical Note is hence based on a conservative side.

6 Conclusion

- The preliminary water quality impact assessment of the proposed sewage treatment works in Area 10b to the water sensitive receivers during operational phase has be conducted. The modelling result indicates that the water quality in the vicinity of marine-based WSRs would be in compliance with WQOs in SS, *E. coli* and UIA. Exceedance of TIN under WQO is observed. However the contribution is due to high TIN level in background from Pearl River estuary. The predicted depth averaged TIN would slightly increase of the baseline value by 1-2% and is considered as not significant.
- Notwithstanding the above discussion, the Project Proponent of Area 10b still commits to review the effectiveness of any suitable technology available at the time of detailed design that could deliver discharge limits that are as good as that proposed now. In particular, it is noted that some of the existing STWs beyond South Lantau can achieve an even lower total nitrogen concentration, say 10 mg/L in Peng Chau STW. The possibility to reduce the total nitrogen level to similar level will be further explored during the detailed design stage.

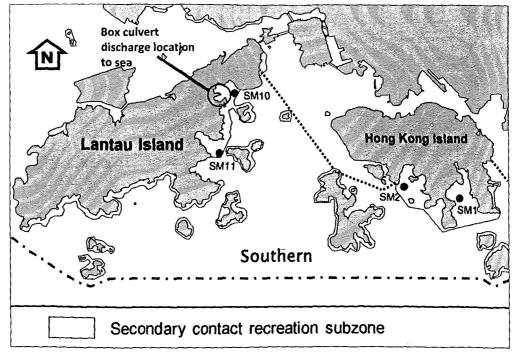
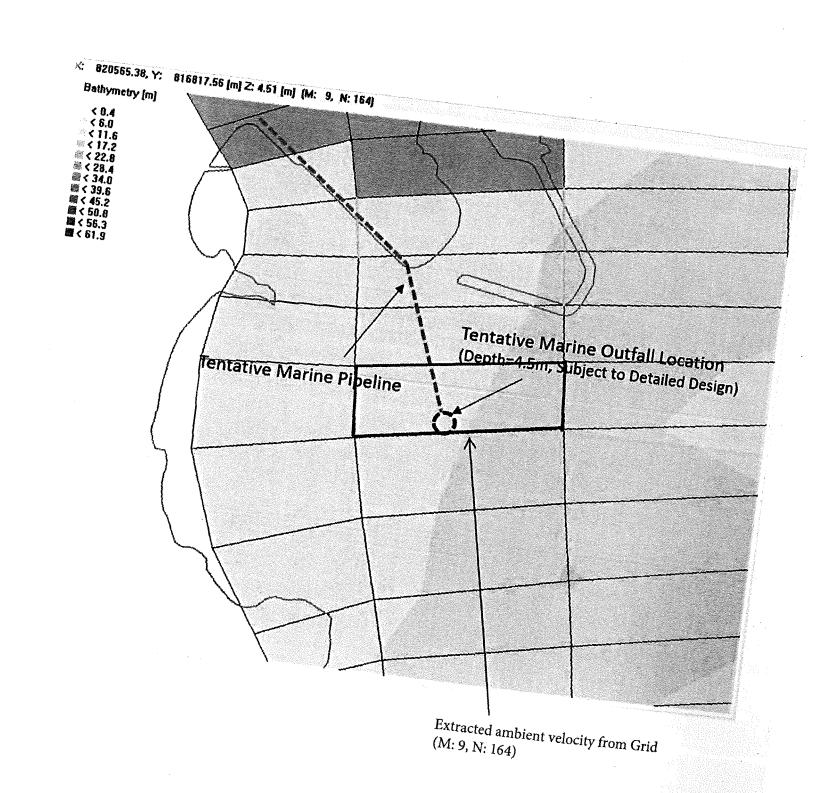
Figures

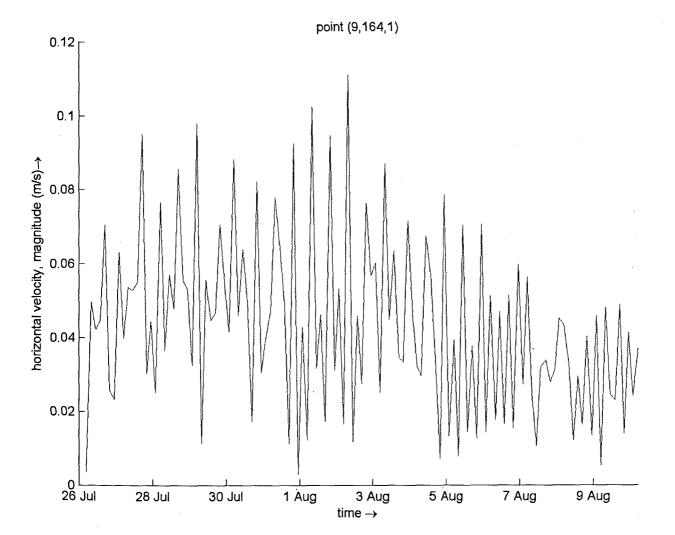
Appendix A

EPD Marine Water Quality

Monitoring Data

Figure A1 Locations of the Environmental Protection Department's marine monitoring measurement sites, captured from the EPD's marine water reports 2014


Table A1 Annual average of the water quality parameters at EPD's marine monitoring site SM10

Year	Total Inorganic Nitrogen (mg/L)	E. coli ^[1] (cfu/100mL)	Suspended Solids (mg/L)	Unionised Ammonia (mg/L)	Total Phosphorus (mg/L)
2005	0.35	9.44	7.10	0.005	0.038
2006	0.32	19.04	9.06	0.006	0.044
2007	0.32	11.28	8.15	0.006	0.046
2008	0.37	14.59	7.33	0.005	0.041
2009	0.28	10.51	8.28	0.003	0.037
2010	0.33	5.00	5.46	0.003	0.035
2011	0.36	2.37	7.12	0.003	0.039
2012	0.42	2.82	7.20	0.003	0.038
2013	0.35	2.78	3.92	0.003	0.039
2014	0.30	4.30	4.68	0.004	0.045

^[1] According to WQO, the criterion for *E. coli* should be calculated as annual geometric mean of its concentration, instead of the annual arithmetic mean.

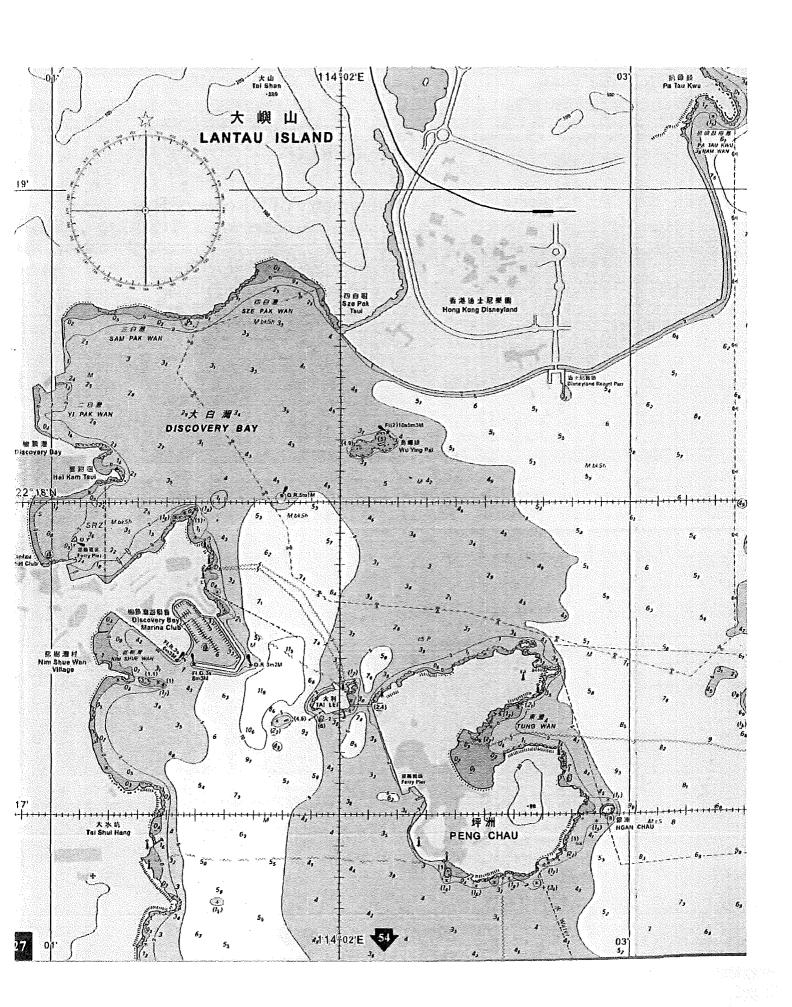
Appendix B Delft 3D Modelling Result

Õ.

Ć.

Ć.

Ĝ.


<u>(1</u>

(i)

ê

Appendix C

Bathymetry of Discovery Bay

Ø.

A

().

3

個

Ø

9

6

a

0

9

(4)

■

輔航設備 **NAVIGATION AIDS** 燈標·立標 浮標 務號、雷達 Lights, Beacons Buoys Fog Signal, Radar 主模標 Major light 详帮的收(体形、维形、琼形、柱形) 项立格上的客角 (響致一次・周期15秒) Lighted beacon, with horn giving a single blast every 15 seconds A - a 1 Shapes of buoys (conical, can, spherical, pillar) FISSJ7mtRM Horn(1)15t 整泊浮標 Leading lights Mooring busy 雷進馬答器 Radar transponder beacon 定向燈 (B) Paten 万位浮標(北·東·南·西) Cardinal buoys (North, East, South, West) Direction light 1111 自動識別系統發射機 扇形燈 Automatic Identification System transmitter (a) A(5) Sector light **匹立危险物淬棉** 改准标记 Isolated danger buoy PLG 一般信徒站 Lighted marks Signal station in general 安全水域浮標 一般在標 Safe water buove \$. 航通走向 Bescon in general 特殊浮像 Direction of buoyage ခု *ခု* ခု 宽缆等限贴的立线 Special buoys Cable landing bencon

LEGEND

HYDROGRAPHY & SERVICES 海道測量及服務 筋败 深度 沉船,障礙物 Tracks, Routes Depths Wrecks, Obstructions 导触腺(實線為為週籍的航路) 经付付债官出海面从基面的沉积 實際位置的水潭 Soundings in true position 9, Wreck showing any portion of hull at level of chart datum Leading line (firm line is the truck to be followed) 没有固定摩航操练的建議服路 谨稳杆露出海圈基准面的沉积 化出高度 Recommended tracks not based on a system of fixed marks Wreck of which the mast(s) only are visible at Chart Datum Wa Masts Drying heights 已知最小深度的风焰 (P) We Established direction of traffic flaw Wreck, least depth known by sounding only 疏为纸道或题域(州缘堤深度) MSTR 15 A. Unintained Dopin 16m 無線電報告點 Radio tepoting points Dredged channel or area with maintained depth 摄小深度不明的沉铅。 射截行有潜在危险 Wreck, least depth unknown, considered to be potentially 凤路分隔措施(阴时): Examples of Routing Measures : dangerous to some 等深線 磁码地·對於行無危險、 但應避免組織、按網等。 Depth contours (3) # [B] Foul ground, not dangerous to surface navigation but to be avoided by vessels anchering. ./.@V. trawling etc. 0 **進石游** 已知最小深度的障礙物 Rocky area, which covers and uncovers Dog Obsta Obstruction, least depth known ① 分通航行制(以分隔帶/線隔開) by sounding only Traffic Separation Scheme, traffic separated by separation zone/line 真礁(附蠡小深度) Fish haven with minimum depth 底質 @141 替成值 Nature of the Scabed Precautionary area 海產養殖場 Matine farm 19 Sand ③ 治岸板行馬 Inshore traffic zone Mad M Ĉ٧ 14.1 Clay ME Sili 50 近岸设施 區域、界線 51 .5 Stones Offshore Installations Areas, Limits 16.00 Gravel 清底電纜 1.64.5 Pebbles 限制區 Submarine cable 网络石 Cobbles Restricted area ĽĐ 15 E Rock Submarine cable area 禁题界線(不准檢追) 扇斑 Caral Limit of area into which entry is prohibited 用磁 Shells 50 海底帕實纜 Two layers, e.g. Sand over Mod Submarine nower cable 伊州兵智: 似地 Anchorage area 例如上沙下港 ABRI . A The main constituent is 15 A4 Sti Submatino power cable area given first for mixtures, e.g. fine rand with mad and shells 往主要成份。 附如的沙龙会 结束拟似品 外用海底電纜 Disused submarine cable Anchoring prohibited area X . A.12 . and the Market 禁止摘息盛 礁石 但應管邏 Sopply pipeling Fishing prohibited area Rocks 拍放管道 Outfull and intake 息斯保育员 --- 114 ---乾出礁(高度在海园基準以上) 特用管道 Disused pipeline/outfall 海岸保護區 Rock which covers and uncovers, height above Chart Datum احددالالاحد 航速限制區 適准線(在海網基準面) Rock awash at the level of Chart Datum SRZ Speed Restricted Zone 服務 Services Harbour Lieur Harbour limit 危險暗熄(深度不明) 領港员登船站 **(1)** Dangerous underwater rock Pilot boarding place of uncertain depth 香港特别行政医医节 Boundary of the Hong Kong Special Administrative Region 危險暗礁(已知深层) (1) Marina Dangerous underwater rock of known depth 指定供给照料摄 Designated bunkering area 并危险情感(已知深度) Non-dangerous rock, depth known 30 1.10 Day Breakers

Appendix D

CORMIX model output

dry_u010.prd

CORMIX2 PREDICTION FILE:

```
Subsystem CORMIX2: Multiport Diffuser Discharges CORMIX Version 5.0GT
                                             HYDRO2 Version 5.0.1.0 December 2007
CASE DESCRIPTION
  Site name/label:
  Design case:
                                         C:\...5928\cormix\Area10b\8port_lower_flow\dry_u010.prd
  FILE NAME:
                                         Thu Oct 20 10:30:15 2016
  Time stamp:
ENVIRONMENT PARAMETERS (metric units)
  Unbounded section
                             4.50
                                                                   4.50
  HA
              =
                                        HD
                                                    =
                            0.013 F
                                                                  0.019 \text{ USTAR} = 0.6338E-03
  UΑ
                                                    =
                             2.000 UWSTAR=0.2198E-02
  Uniform density environment
  STRCND= U
                                        RHOAM = 1022.0000
DIFFUSER DISCHARGE PARAMETERS (metric units)
  Diffuser type:
                                        DITYPE= alternating_perpendicular
                                                               305.00 YB1 =
  BANK = LEFT
                                                                                                     300.00
                                        DISTB =
                                                                                                                      YB2
                                                                                                                                            310.00
                                                              8
0,002 HO
-+ing_wi
                           10.00 NOPEN = 0.045 AO =
                        10.00
                                                                                                         1.43
  I D
                                                                               SPAC
             =
                                                                                          =
  DO = 0.045 AO = 0.002 HO = 0.00
Nozzle/port arrangement: alternating_without_fanning
                                                                                                          0.00
                                                                                                                      SUB<sub>0</sub>
                                                                                                                                                4.50
                                       THETA = 0.00 \text{ SIGMA} = 0.013 = 0
  GAMMA =
                          90.00
                                                                                                        0.\bar{0}0
                                                                                                                      BETA
                                                                                                                                              90.00
                           0.998 Q0
                                                                                          =0.1270E-01
  RHOO = 1000.0000 DRHOO = 0.2200E + 02 GPO
                                                                                          =0.2111E+00
  C0 = 0.1000E + 01 CUNITS = mg/1
  IPOLL =
                                                    =0.0000E+00 KD =0.0000E+00
                                        KS
FLUX VARIABLES - PER UNIT DIFFUSER LENGTH (metric units)
  q0 = 0.1270E-02 m0 = 0.1268E-02 j0
                                                                                           =0.2681E-03
                                                                                                                     SIGNJO=
                                                                                                                                                1.0
  Associated 2-d length scales (meters)
           = 0.001 TM = 0.31
= 99999.00 Tbp = 99999.00
  1Q=B =
                                                                 0.31
                                                                                                         7.50
                                                                                           = 99999.00
FLUX VARIABLES - ENTIRE DIFFUSER (metric units)
  Q0 = 0.1270E-01 M0 = 0.1268E-01 J0
                                                                                           =0.2681E-02
  Associated 3-d length scales (meters)
                            0.04 LM
                                                                                                                                          1220.30
                                                                  0.73
                                                                                                         8.66 Lb
  LQ
            =
                                                   =
                                                                              Lm
                                                                                                 99999.00
                                                                                                                                        99999.00
                                                                                                                    Lbp
                                                                               Lmp
NON-DIMENSIONAL PARAMETERS
                                                                                                                                              73.
  FR0 = 60.90 FRD0 =
                                                                 10.24 R
                                                                                                       76.78 PL
  (slot)
                                        (port/nozzle)
RECOMPUTED SOURCE CONDITIONS FOR ALTERNATING JETS OR RISER GROUPS:
 Momentum fluxes: m0
lQ=B = 0.018 lm
                                                   =0.8909E-04
                                                                                          =0.8909E-03
                                                                              мО
                                                                                                                                       99999.00
                                                    =
                                                                  0.02
                                                                               1m
                                                                                                         0.53
                                                                                                                      lmp
                                                                                           =
                            0.030 LM
                                                 =
                                                                                                         2.30
                                                                                                                                       99999.00
 LQ
                                                                  0.10 Lm
                                                                                          =
                                                                                                                     Lmp
  Properties of riser group with 1 ports/nozzles each: U0 = 0.070 D0 = 0.170 A0 = 0.170 
                           0.070 d0 =
1.13 FRD0 =
                                                                                                         0.023 THETA =
                                                                                                                                              90.00
 UO
  FR0
             =
                                                                  0.37 R
                                                                                                         5.40
  (slot)
                                         (riser group)
FLOW CLASSIFICATION
  MIXING ZONE / TOXIC DILUTION / REGION OF INTEREST PARAMETERS
 CO = 0.1000E + 01 CUNITS = mq/1
 NTOX = 0
```

```
dry_u010.prd
                       CSTD = 0.4700E - 02
 NSTD
 REGMZ =
           0
             2000.00 \text{ XMAX} =
 XINT
                                  2000.00
X-Y-Z COORDINATE SYSTEM:
    ORIGIN is located at the bottom and the diffuser mid-point:
305.00 m from the LEFT bank/shore.

X-axis points downstream, Y-axis points to left, Z-axis points upward.

NSTEP = 50 display intervals per module
BEGIN MOD101: DISCHARGE MODULE (SINGLE PORT AT DIFFUSER CENTER)
                           Z
                                               C
                                                        ΒV
                                                                   BH
       0.00
                 0.00
                          0.00
                                     1.0 0.100E+01
                                                       0.08
                                                                  0.08
END OF MOD101: DISCHARGE MODULE (SINGLE PORT AT DIFFUSER CENTER)
BEGIN CORJET (MOD110): JET/PLUME NEAR-FIELD MIXING REGION
 Jet/plume transition motion in weak crossflow.
                                                         85.61 SIGMAE=
0.00 ZE =
 zone of flow establishment:
                                              THETAE=
                 0.13 XE
                                       0.01 YE
                                                                                    0.13
  LE
 Profile definitions:
   BV = Gaussian 1/e (37\%) half-width, in vertical plane normal to trajectory BH = before merging: Gaussian 1/e (37\%) half-width in horizontal plane
         normal to trajectory after merging: top-hat half-width in horizontal plane
                           parallel to diffuser line
      = hydrodynamic centerline dilution
      = centerline concentration (includes reaction effects, if any)
                                                        ΒV
                                                                   BH
  Individual jet/plumes before merging: 0.01 0.00 0.13 1.0 0.1
                                    1.0 0.100E+01
                                                       0.08
                                                                  0.08
                 0.00
                                    1.0 0.100E+01
                                                                  0.08
                                                       0.08
      0.01
                          0.13
                          0.33
                 0.00
      0.08
                                     1.7 0.596E+00
                                                       0.07
                                                                  0.07
                                     3.1 0.325E+00
                                                       0.09
                                                                  0.09
                 0.00
      0.20
                                    4.8 0.209E+00
6.7 0.149E+00
      0.33
                 0.00
                          0.68
                                                       0.12
                                                                  0.12
                          0.84
      0.47
                 0.00
                          0.99
                                    8.8 0.113E+00
                                                       0.18
                                                                  0.18
      0.62
                 0.00
                                                       0.20
      0.79
                 0.00
                          1.12
                                   11.0 0.906E-01
                                                                  0.20
                                   13.3 0.752E-01
15.5 0.643E-01
                          1.24
      0.97
                0.00
                                                       0.23
                                                       0.25
0.27
                          1.34
      1.16
                 0.00
      1.36
                 0.00
                          1.43
                                   17.8 0.561E-01
                                   20.1 0.498E-01
22.3 0.448E-01
                          1.51
1.59
                                                       0.29
      1.55
                0.00
                                                       0.32
      1.76
                0.00
                                   24.6 0.407E-01
      1.96
                          1.65
                                                       0.34
                                                                  0.34
                0.00
                                   26.9 0.372E-01
                                                       0.36
                                                                  0.36
      2.17
                0.00
                          1.71
                                   29.1 0.344E-01
      2.37
                0.00
                          1.76
                                                       0.38
                                                                  0.38
                          1.81
                                   31.4 0.319E-01
      2.58
                                                       0.40
                                                                  0.40
                0.00
      2.79
                                   33.6 0.298E-01
                                                       0.42
                                                                  0.42
                0.00
                          1.86
                          1.90
                                   35.9 0.279E-01
      3.00
                                                       0.43
                                                                  0.43
                0.00
                                                       0.45
                                   38.2 0.262E-01
      3.21
                          1.94
                0.00
                                                                  0.47
                          1.98
                                   40.5 0.247E-01
      3.42
                0.00
                                   42.8 0.233E-01
45.2 0.221E-01
      3.63
                          2.02
                                                       0.49
                                                                  0.49
                0.00
      3.84
                                                                  0.51
                                                       0.51
                          2.06
                0.00
      4.06
                0.00
                          2.10
                                   47.7 0.210E-01
                                                       0.52
                                   50.2 0.199E-01
52.7 0.190E-01
                          2.14
      4.27
                                                       0.54
                0.00
                                                       0.56
      4.48
                                                                  0.56
                0.00
      4.69
                          2.22
                                   55.2 0.181E-01
                                                       0.58
                0.00
                                                       0.59
      4.90
                0.00
                                   57.8 0.173E-01
                                                                  0.59
                          2.26
                          2.30
                                   60.4 0.165E-01
      5.11
                0.00
                                                       0.61
                                                                  0.61
                                   63.1 0.158E-01
      5.32
                0.00
                          2.34
                                                       0.63
                                                                  0.63
```

Ľ,

12

1

8

fan sin

Page 2

65.8 0.152E-01

2.38

0.00

0.65

0.65

```
dry_u010.prd
68.6 0.146E-01
71.3 0.140E-01
74.2 0.135E-01
                                                                                0.66
                                                                                               0.66
          5.74
                        0.00
                                      2.42
                                      2.46
          5.95
                        0.00
                                                                                0.68
                                                                                               0.68
                                                                                0.70
          6.16
                        0.00
                                      2.50
                                                                                               0.70
  6.38 0.00 2.53 77.0 0.130E-01 0.71 0. Merging of individual jet/plumes to form plane jet/plume: 6.40 0.00 2.54 100.9 0.991E-02 0.90 5.
                                                                                               0.71
                                      2.60
2.64
2.67
                                                 104.7 0.955E-02
106.7 0.938E-02
108.6 0.921E-02
         6.80
7.01
                                                                                               5.93
                        0.00
                                                                                0.93
                                                                                               5.94
                        0.00
                                                                                0.94
                                                                                0.96
                                                                                               5.96
          7.22
                        0.00
                                                 108.6 0.921E-02
110.6 0.904E-02
112.6 0.888E-02
114.5 0.873E-02
116.5 0.858E-02
118.5 0.844E-02
120.4 0.830E-02
                                      2.70
2.73
2.77
                                                                                               5.98
          7.43
                                                                                0.98
                        0.00
          7.65
                        0.00
                                                                                0.99
                                                                                               5.99
                                                                                1.01
                        0.00
          7.86
                                                                                               6.01
                                      2.80
          8.07
                        0.00
                                                                                1.03
                                                                                               6.03
                                      2.83
          8.28
                                                                                1.04
                                                                                               6.04
                        0.00
                        0.00
          8.49
                                                                                1.06
                                                                                               6.06
                                                 122.4 0.817E-02
124.4 0.804E-02
126.4 0.791E-02
128.4 0.779E-02
                                      2.90
2.93
2.97
          8.71
                        0.00
                                                                                1.08
                                                                                               6.08
          8.92
                        0.00
                                                                                1.09
                                                                                               6.09
          9.13
                                                                                1.11
                                                                                               6.11
                                      3.00
          9.34
                         0.00
                                                                                1.13
                                                                                               6.13
                                                  130.4 0.767E-02
132.4 0.755E-02
         9.55
9.76
                                      3.04
                        0.00
                                                                                1.14
                                                                                               6.14
                                                                                1.16
                        0.00
                                      3.07
                                                                                               6.16
          9.98
                        0.00
                                      3.10
                                                  134.4 0.744E-02
                                                          90.1355 sec
 Cumulative travel time =
END OF CORJET (MOD110): JET/PLUME NEAR-FIELD MIXING REGION
BEGIN MOD232: LAYER BOUNDARY IMPINGEMENT/UPSTREAM SPREADING
   Vertical angle of layer/boundary impingement
                                                                                                 9.11 dea
   Horizontal angle of layer/boundary impingement = 0.00 deg
 UPSTREAM INTRUSION PROPERTIES:
             Upstream intrusion length
                                                                                          319.35 m
            X-position of upstream stagnation point =
Thickness in intrusion region =
Half-width at downstream end =
                                                                                        -309.37 m
0.02 m
                                                                                          447.20 m
             Thickness at downstream end
                                                                                             0.47 \, \text{m}
 In this case, the upstream INTRUSION IS VERY LARGE, exceeding 10 times
    the local water depth.
 This may be caused by a very small ambient velocity, perhaps in combination with large discharge buoyancy.

If the ambient conditions are strongly transient (e.g. tidal), then the CORMIX steady-state predictions of upstream intrusion are probably unrealistic.
 The plume predictions prior to boundary impingement and wedge formation will be acceptable, however.
   Control volume inflow:
                                       Z
                                                                                 ΒV
                                                                                                BH
          9.98
                                      3.10 134.4 0.744E-02
                        0.00
                                                                                1.18
                                                                                               6.18
 Profile definitions:
    BV = top-hat thickness, measured vertically
BH = top-hat half-width, measured horizontally in y-direction
ZU = upper plume boundary (Z-coordinate)
ZL = lower plume boundary (Z-coordinate)
S = hydrodynamic average (bulk) dilution
C = average (bulk) concentration (includes reaction effects, if any)
                                                                                 BV
                                                                                                              ΖU
    -309.37
                                  4.50 9999.9 0.000E+00
                                                                              0.00
                                                                                               0.00
                                                                                                             4.50
                        0.00
** WATER QUALITY STANDARD OR CCC HAS BEEN FOUND **
 The pollutant concentration in the plume falls below water quality standard or CCC value of 0.470E-02 in the current prediction interval.

This is the spatial extent of concentrations exceeding the water quality
    standard or CCC value.
```

			dry_u010.prd				
-298.51	0.00	4.50	581.5 0.172E-02	0.01	63.24	4.50	4.49
-245.30	0.00	4.50	241.3 0.414E-02	0.01	153.62	4.50	4.49
-192.09	0.00	4.50	181.9 0.550E-02	0.02	207.84	4.50	4.48
-138.89	0.00	4.50	155.8 0.642E-02	0.02	250.59	4.50	4.48
-85.68	0.00	4.50	142.3 0.703E-02	0.02	287.04	4.50	4.48
-32.47	0.00	4.50	135.8 0.736E-02	0.02	319.36	4.50	4.48
20.74	0.00	4.50	137.1 0.729E-02	0.03	424.24	4.50	4.47
73.95	0.00	4.50	217.5 0.460E-02	0.15	430.55	4.50	4.35
127.16	0.00	4.50	332.9 0.300E-02	0.32	436.43	4.50	4.18
180.37	0.00	4.50	402.9 0.248E-02	0.43	441.96	4.50	4.07
233.58	0.00	4.50	432.1 0.231E-02	0.47	447.20	4.50	4.03
Cumulative	travel ti	ne =	17290.1152 sec				

END OF MOD232: LAYER BOUNDARY IMPINGEMENT/UPSTREAM SPREADING

** End of NEAR-FIELD REGION (NFR) **

In this design case, the diffuser is located CLOSE TO BANK/SHORE.

Some boundary interaction occurs at end of near-field.

This may be related to a design case with a VERY LOW AMBIENT VELOCITY.

The dilution values in one or more of the preceding zones may be too high.

Carefully evaluate results in near-field and check degree of interaction.

Consider locating outfall further away from bank or shore. In the next prediction module, the plume centerline will be set to follow the bank/shore.

BEGIN MOD241: BUOYANT AMBIENT SPREADING

Plume is ATTACHED to LEFT bank/shore. Plume width is now determined from LEFT bank/shore.

Profile definitions:

BV = top-hat thickness, measured vertically
BH = top-hat half-width, measured horizontally in y-direction
ZU = upper plume boundary (Z-coordinate)
ZL = lower plume boundary (Z-coordinate)
S = hydrodynamic average (bulk) dilution

= average (bulk) concentration (includes reaction effects, if any)

Plume Stage 2 (bank attached):

rume stage	Z (Dank	actache	u):					
X	Υ	Z	S	C	BV	вн	ZU	ZL
233.58	305.00	4.50	432.1	0.231E-02	0.56	752.20	4.50	3.94
268.90	305.00	4.50	455.5	0.220E-02	0.57	775.13	4.50	3.93
304.23	305.00	4.50	480.0	0.208E-02	0.59	797.69	4.50	3.91
339.56	305.00	4.50	505.8	0.198E-02	0.60	819.91	4.50	3.90
374.89	305.00	4.50	532.9	0.188E-02	0.62	841.84	4.50	3.88
410.22	305.00	4.50	561.3	0.178E-02	0.64	863.48	4.50	3.86
445.55	305.00	4.50	590.9	0.169E-02	0.65	884.86	4.50	3.85
480.87	305.00	4.50	621.9	0.161E-02	0.67	906.00	4.50	3.83
516.20	305.00	4.50	654.3	0.153E-02	0.69	926.92	4.50	3.81
551.53	305.00	4.50		0.145E-02	0.71	947.64	4.50	3.79
586.86	305.00	4.50	723.2	0.138E-02	0.73	968.16	4.50	3.77
622.19	305.00	4.50	759.7	0.132E-02	0.75	988.50	4.50	3.75
657.52	305.00	4.50	797.7	0.125E-02	0.77	1008.67	4.50	3.73
692.85	305.00	4.50	837.2	0.119E-02	0.80	1028.69	4.50	3.70
728.17	305.00	4.50	878.1	0.114E-02	0.82	1048.55	4.50	3.68
763.50	305.00	4.50	920.5	0.109E-02	0.84	1068.27	4.50	3.66
798.83	305.00	4.50	964.4	0.104E-02	0.87	1087.85	4.50	3.63
834.16	305.00	4.50	1009.9	0.990E-03	0.89	1107.31	4.50	3.61
869,49	305.00	4.50	1057.0	0.946E-03	0.92	1126.64	4.50	3.58
904.82	305.00	4.50	1105.6	0.905E-03	0.94	1145.86	4.50	3.56
940.15	305.00	4.50	1155.8	0.865E-03	0.97	1164.96	4.50	3.53
975.47	305.00	4.50	1207.6	0.828E-03	1.00	1183.96	4.50	3.50
1010.80	305.00	4.50	1261.1	0.793E-03	1.02	1202.85	4.50	3.48
1046.13	305.00	4.50	1316.2	0.760E-03	1.05	1221.65	4.50	3.45
1081.46	305.00	4.50	1372.9	0.728E-03	1.08	1240.35	4.50	3.42
1116.79	305.00	4.50	1431.4	0.699E-03	1.11	1258.95	4.50	3.39

```
dry_u010.prd
4.50 1491.6 0.670E-03
4.50 1553.4 0 644-
                                                                            1.14
   1152.12
                   305.00
                                                                                     1277.47
                                                                                                        4.50
                                                                                                                     3.36
                                            1553.4 0.644E-03
1617.1 0.618E-03
                                                                            1.17
1.20
1.23
                                                                                      1295.90
                                                                                                        4.50
4.50
                   305.00
                                                                                                                      3.33
   1187.44
                                                                                                                     3.30
3.27
                                   4.50
4.50
   1222.77
                   305.00
                                                                                      1314.25
                                            1617.1 0.618E-03
1682.4 0.594E-03
1749.6 0.572E-03
1818.5 0.550E-03
1889.3 0.529E-03
1961.9 0.510E-03
2036.3 0.491E-03
2112.6 0.473E-03
2190.7 0.456E-03
   1258.10
                   305.00
                                                                                      1332.52
                                                                                                        4.50
                                   4.50
                                                                            1.27
                                                                                                        4.50
   1293.43
                   305.00
                                                                                      1350.71
                                                                                                                     3.23
   1328.76
                   305.00
                                   4.50
                                                                            1.30
                                                                                      1368.82
                                                                                                        4.50
                                                                                                                      3.20
                                   4.50
4.50
4.50
4.50
                                                                                                        4.50
   1364.09
                   305.00
                                                                            1.33
                                                                                      1386.85
                                                                                                                     3.17
                                                                                                        4.50
   1399.42
                                                                                     1404.82
                   305.00
                                                                            1.36
                                                                                                                      3.14
                   305.00
305.00
   1434.74
                                                                            1.40
                                                                                      1422.71
                                                                                                        4.50
                                                                                                                      3.10
   1470.07
                                                                            1.43
                                                                                      1440.54
                                                                                                        4.50
                                                                                                                     3.07
                                   4.50
                                                                                     1458.29
                                                                                                        4.50
   1505.40
                   305.00
                                                                            1.47
                                                                                                                      3.03
                                   4.50
4.50
                                            2270.8 0.440E-03
2352.8 0.425E-03
                   305.00
                                                                            1.50
                                                                                     1475.98
                                                                                                        4.50
   1540.73
                                                                                                                     3.00
                                  4.50 2352.8 0.425E-03

4.50 2436.6 0.410E-03

4.50 2522.5 0.396E-03

4.50 2610.2 0.383E-03

4.50 2700.0 0.370E-03

4.50 2791.7 0.358E-03

4.50 2885.4 0.347E-03

4.50 2981.2 0.335E-03

4.50 3079.0 0.325E-03

4.50 3178.8 0.315E-03

4.50 3280.7 0.305E-03

4.50 3384.7 0.295E-03

4.50 3490.8 0.286E-03

e = 153168.9375 sec
                                                                            1.54
                                                                                      1493.61
                                                                                                        4.50
                                                                                                                     2.96
   1576.06
                   305.00
   1611.39
                   305.00
                                                                            1.58
                                                                                     1511.17
                                                                                                        4.50
                                                                                                                     2.92
                                                                                      1528.67
1546.11
                                                                                                        4.50
4.50
                                                                                                                      2.89
                   305.00
   1646.71
                                                                            1.61
   1682.04
                   305.00
                                                                            1.65
                                                                                                                      2.85
                                                                            1.69
   1717.37
                   305.00
                                                                                     1563.49
                                                                                                        4.50
                                                                                                                     2.81
                                                                                     1580.82
                                                                                                        4.50
   1752.70
                   305.00
                                                                            1.73
                                                                                                                     2.77
                   305.00
305.00
                                                                            1.76
   1788.03
                                                                                      1598.08
                                                                                                        4.50
                                                                                      1615.29
   1823.36
                                                                            1.80
                                                                                                        4.50
                                                                                                                     2.70
                   305.00
                                                                            1.84
                                                                                      1632.44
                                                                                                        4.50
   1858.69
                                                                                                                      2.66
   1894.01
                   305.00
                                                                            1.88
                                                                                      1649.54
                                                                                                        4.50
                                                                                                                      2.62
   1929.34
                   305.00
                                                                            1.92
                                                                                      1666.58
                                                                                                        4.50
                                                                                                                     2.58
                                                                            1.96
   1964.67
                   305.00
                                                                                      1683.58
                                                                                                        4.50
                                                                                                                     2.54
   2000.00
                   305.00
                                                                            2.01
                                                                                     1700.52
                                                                                                        4.50
                                                153168.9375 sec
Cumulative travel time =
```

Simulation limit based on maximum specified distance = 2000.00 m. This is the REGION OF INTEREST limitation.

END OF MOD241: BUOYANT AMBIENT SPREADING

dry_u050.prd

CORMIX MIXING ZONE EXPERT SYSTEM
Subsystem CORMIX2: Multiport Diffuser Discharges

CORMIX2 PREDICTION FILE:

```
CORMIX Version 5.0GT
                        HYDRO2 Version 5.0.1.0 December 2007
CASE DESCRIPTION
 Site name/label:
 Design case:
                     C:\...5928\cormix\Area10b\8port_lower_flow\dry_u050.prd
 FILE NAME:
                     Thu Oct 20 10:31:02 2016
 Time stamp:
ENVIRONMENT PARAMETERS (metric units)
 Unbounded section
                                    4.50
 HA
       =
               4.50
                     HD
               0.042 F
                                   0.019 \text{ USTAR} = 0.2048E-02
 UA
               2.000 UWSTAR=0.2198E-02
 UW
       ==
 Uniform density environment
                     RHOAM = 1022.0000
 STRCND= U
DIFFUSER DISCHARGE PARAMETERS (metric units)
                     DITYPE= alternating_perpendicular
 Diffuser type:
 BANK = LEFT
                     DISTB =
                                 305.00 YB1
                                                      300.00
                                                              YB2
                                                                          310.00
              10.00 NOPEN = 0.045 A0 =
 LD
                                 8
                                          SPAC
                                                      1.43
                                   0.002 HO
                                                        0.00
                                                              SUB0
                                                                            4.50
                           =
                                                =
 Nozzle/port arrangement: alternating_without_fanning
              90.00 THE
0.998 Q0
                                   0.00
 GAMMA =
                     THETA =
                                          SIGMA =
                                                       0.Ŏ0
                                                              BETA
                                                                           90.00
                                                =0.1270E-01
                                   0.013
                           =
 RHOO = 1000.0000 DRHOO = 0.2200E+02
                                          GP0
                                                =0.2111E+00
                    CUNITS= mg/l
KS =0.0000E+00 KD
      =0.1000E+01
 C0
 IPOLL = 1
                                                =0.0000E+00
FLUX VARIABLES - PER UNIT DIFFUSER LENGTH (metric units) q0 =0.1270E-02 m0 =0.1268E-02 j0 =0.2681E-03
       =0.1270E-02 m0
                                          j0
                                                =0.2681E-03
                                                              SIGNJO=
                                                                            1.0
 Associated 2-d length scales (meters)
          0.001 lm
99999.00 lbp
                           =
 1Q=B =
                                   0.31
                                          3 m
                                                        0.72
                           = 99999.00
                                                   99999.00
FLUX VARIABLES - ENTIRE DIFFUSER (metric units)
Q0 =0.1270E-01 M0 =0.1268E-01 J0 =0
                                                =0.2681E-02
 Associated 3-d length scales (meters)
               0.04
                    LM
                                   0.73
                                                        2.68
                                                              Lb
                                                                           36.19
                                                   99999.00
                                                                        99999.00
                                                              Lbp
                                          Lmp
NON-DIMENSIONAL PARAMETERS
 FR0
             60.90 \text{ FRDO} =
                                  10.24 R
                                                      23.77
                                                              PL
                                                                           73.
                                                =
 (slot)
                     (port/nozzle)
RECOMPUTED SOURCE CONDITIONS FOR ALTERNATING JETS OR RISER GROUPS:
                         =0.8909E-04
                                                =0.8909E-03
 Momentum fluxes:
                    mΟ
                                         м0
               0.018 TM
                                   0.02
                                                       0.05
                           =
                                         ٦m
                                                =
                                                              1mp
                                                                        99999.00
 10=R =
               0.030 LM
                                                =
                                                       0.71
                                                                        99999.00
                           =
                                   0.10
                                         Lm
                                                              Lmp
 LO
Properties of riser group with U0 = 0.070 D0 =
                                   1 ports/nozzles each:
0.170 AO = 0.
               0.070 D0 = 1.13 FRD0 =
                                                       0.023 THETA =
                                                                           90.00
 FR0
                                   0.37
                                         R
                                                       1.67
 (slot)
                     (riser group)
FLOW CLASSIFICATION
 2 Flow class (CORMIX2) = 2 Applicable layer depth HS =
                                     MU1H
                               =
 CO =0.1000E+01 CUNITS= mg/l
MIXING ZONE / TOXIC DILUTION / REGION OF INTEREST PARAMETERS
```

```
dry_u050.prd
 NSTD = 1
                            CSTD = 0.4700E - 02
 REGMZ = 0
 XINT =
             2000.00 \text{ XMAX} =
                                          2000.00
X-Y-Z COORDINATE SYSTEM:
     ORIGIN is located at the bottom and the diffuser mid-point:
305.00 m from the LEFT bank/shore.
X-axis points downstream, Y-axis points to left, Z-axis points upward.
NSTEP = 50 display intervals per module
                           -----
BEGIN MOD101: DISCHARGE MODULE (SINGLE PORT AT DIFFUSER CENTER)
                     Y
0.00
                                                         C
                                                                     RV
        0.00
                                0.00
                                             1.0 0.100E+01 0.08
END OF MOD101: DISCHARGE MODULE (SINGLE PORT AT DIFFUSER CENTER)
BEGIN CORJET (MOD110): JET/PLUME NEAR-FIELD MIXING REGION
 Jet/plume transition motion in strong crossflow.
                                  ent: THETAE= 76.07 SIGMAE=
= 0.00 YE = 0.00 ZE =
 Zone of flow establishment:
                                                                                                  0.00
                     0.00 XE
                                                                                                     0.00
 Profile definitions:
   BV = Gaussian 1/e (37%) half-width, in vertical plane normal to trajectory
BH = before merging: Gaussian 1/e (37%) half-width in horizontal plane
normal to trajectory
after merging: top-hat half-width in horizontal plane
       parallel to diffuser line = hydrodynamic centerline dilution
        = centerline concentration (includes reaction effects, if any)
  Individual jet/plumes before merging:

0.00 0.00 0.00 1.0 0.100E+01

0.66 0.00 0.24 3.6 0.279E+00
                                                                   0.08
                                                                                0.08
                                                                   0.11
                                                                                0.11
                                0.43
                                           7.6 0.132E+00
                                                                   0.16
        1.33
                    0.00
                                                                                0.16
                                           12.1 0.825E-01
        2.03
                                                                   0.22
                    0.00
                                0.55
                                                                               0.22
                                                                   0.27
        2.72
                     0.00
                                0.65
                                           17.0 0.590E-01
                                                                                0.27
                                0.73
                                           22.0 0.455E-01
                                                                   0.31
        3.42
                                                                                0.31
                    0.00
                                           27.1 0.369E-01
        4.12
                    0.00
                                0.79
                                                                   0.35
                                                                               0.35
                                           32.3 0.310E-01
37.5 0.266E-01
        4.82
                                0.84
                                                                   0.39
                    0.00
                                                                   0.43
                                                                               0.43
        5.52
                    0.00
                                0.88
                                           43.0 0.233E-01
48.6 0.206E-01
54.3 0.184E-01
        6.23
                    0.00
                                0.92
                                                                   0.47
                                                                   0.50
0.54
        6.93
                    0.00
                                0.96
                                                                               0.50
                                1.00
        7.63
                    0.00
                                                                               0.54
        8.33
                    0.00
                                1.04
                                           60.2 0.166E-01
                                                                   0.57
                                                                                0.57
                                1.08
                                           66.3 0.151E-01
72.5 0.138E-01
        9.03
                                                                               0.61
                    0.00
                                                                   0.61
                                                                   0.64
        9.74
                    0.00
                                1.11
                                                                               0.64
                                           78.8 0.127E-01
      10.44
                    0.00
                                1.15
                                                                   0.67
                                                                                0.67
                                           85.3 0.117E-01
                                                                   0.70
                                                                               0.70
                    0.00
                                1.19
      11.14
  Merging of individual jet/plumes to form plane jet/plume: 11.49 0.00 1.20 109.5 0.913E-02 0.90 5.012.54 0.00 1.25 116.0 0.862E-02 0.95 5.013.24 0.00 1.29 120.3 0.831E-02 0.98 5.013.95 0.00 1.32 124.6 0.803E-02 1.02 6.014.65
                                                                               5.90
                                                                               5.95
                                                                                5.98
                                                                                6.02
                                         124.0 0.003E-02
128.9 0.776E-02
133.2 0.751E-02
137.5 0.727E-02
                                                                   1.05
      14.65
                    0.00
                                1.35
                                                                               6.05
                    0.00
                                                                   1.09
      15.35
                                1.38
                                                                               6.09
                                                                   1.13
                                                                               6.13
      16.05
                                1.42
                    0.00
                                         141.9 0.705E-02
146.2 0.684E-02
150.6 0.664E-02
      16.75
                    0.00
                                1.45
                                                                   1.16
                                                                   1.20
                                                                               6.20
      17.46
                    0.00
                                1.48
                                                                   1.23
                                                                               6.23
      18.16
                    0.00
                                1.52
                                          154.9 0.645E-02
      18.86
                                                                   1.27
                                1.55
                                                                               6.27
                    0.00
                                         159.3 0.628E-02
163.7 0.611E-02
                                1.59
                                                                   1.30
                                                                               6.30
      19.56
                    0.00
      20.27
                    0.00
                                1.62
                                                                   1.34
                                                                               6.34
```

Page 2

```
dry_u050.prd
168.1 0.595E-02
172.5 0.580E-02
176.9 0.565E-02
181.3 0.552E-02
185.7 0.538E-02
190.2 0.526E-02
194.6 0.514E-02
199.1 0.502E-02
203.6 0.491E-02
         20.97
                           0.00
                                          1.66
                                                                                        1.37
                                                                                                         6.41
         21.67
                           0.00
                                          1.69
                                                                                        1.41
                           0.00
                                          1.73
                                                                                        1.45
         22.37
         23.08
                           0.00
                                          1.76
                                                                                        1.48
         23.78
                           0.00
                                          1.80
                                                                                        1.52
                                                                                                         6.52
         24.48
                                                                                        1.55
                           0.00
                                          1.83
                           0.00
         25.18
                                          1.87
                                                                                        1.59
                                          1.90
         25.89
                                                                                        1.63
                                                                                                         6.63
26.59 0.00 1.94 203.6 0.491E-02 1.0
27.29 0.00 1.98 208.1 0.481E-02 1.0
27.99 0.00 2.01 212.6 0.470E-02 1.0
** WATER QUALITY STANDARD OR CCC HAS BEEN FOUND **
                                                                                        1.66
                                                                                                        6.66
                                                                                        1.70
                                                                                                        6.70
 The pollutant concentration in the plume falls below water quality standard or CCC value of 0.470E-02 in the current prediction interval.

This is the spatial extent of concentrations exceeding the water quality
     standard or CCC value.
28.70 0.00 2.0
29.40 0.00 2.0
                                          2.05
2.09
2.12
2.16
2.20
                                                      217.1 0.461E-02
221.6 0.451E-02
226.1 0.442E-02
230.6 0.434E-02
235.2 0.425E-02
                                                                                                        6.81
                                                                                        1.81
         30.10
                           0.00
                                                                                        1.84
                                                                                                         6.84
                           0.00
         30.80
                                                                                        1.88
                           0.00
                                                                                        1.92
         31.51
                                                                                                         6.92
                                                      239.8 0.417E-02
244.3 0.409E-02
248.9 0.402E-02
253.5 0.394E-02
258.1 0.387E-02
                                          2.23
         32.21
                           0.00
                                                                                        1.95
                                                                                                        6.95
                                                                                                        6.99
                                                                                        1.99
         32.91
                           0.00
                                          2.31
                           0.00
                                                                                        2.03
                                                                                                        7.03
         33.61
         34.31
                                          2.35
                           0.00
                                                                                        2.06
                                      2.39
         35.02
                           0.00
  Cumulative travel time =
                                                              414.8818 sec
END OF CORJET (MOD110): JET/PLUME NEAR-FIELD MIXING REGION
BEGIN MOD235: LAYER/BOUNDARY/TERMINAL LAYER APPROACH
   7.10
  Profile definitions:
     BV = top-hat thickness, measured vertically
BH = top-hat half-width, measured horizontally in y-direction
ZU = upper plume boundary (Z-coordinate)
ZL = lower plume boundary (Z-coordinate)
S = hydrodynamic average (bulk) dilution
C = average (bulk) concentration (includes reaction effects, if any)
                                                      258.1 0.387E-02
258.1 0.387E-02
                                                                                                                      4.50
4.50
4.50
4.50
                                                                                                                                     4.50
1.14
         32.92
                           0.00
                                         4.50
                                                                                        0.00
                                                                                                        0.00
                                     4.50
4.50
4.50
4.50
                                                                                                      6.32
14.09
14.11
                                                                                       3.36
3.94
4.27
         34.18
                           0.00
                                                      264.5 0.378E-02
334.9 0.299E-02
         35.44
                                                                                                                                     0.56
                           0.00
                                                                                                                                     0.23
         36.70
                           0.00
                                                      397.7 0.251E-02
                                                                                                                                     0.06
         37.96
                           0.00
                                         4.50
                                                                                        4.44
                                                                                                      14.12
                                                                                                                       4.50
                                       4.50
                                                       420.6 0.238E-02
         39.22
                           0.00
                                                                                        4.50
                                                                                                      14.13
 Cumulative travel time =
                                                              514.8773 sec
END OF MOD235: LAYER/BOUNDARY/TERMINAL LAYER APPROACH
** End of NEAR-FIELD REGION (NFR) **
BEGIN MOD241: BUOYANT AMBIENT SPREADING
 Profile definitions:
     BV = top-hat thickness, measured vertically
BH = top-hat half-width, measured horizontally in y-direction
ZU = upper plume boundary (Z-coordinate)
ZL = lower plume boundary (Z-coordinate)
S = hydrodynamic average (bulk) dilution
C = average (bulk) concentration (includes reaction effects, if any)
```

						•	
Plume Stage	1 (not h	ank att	dry_u050.prd				
39.1034.77 163.65 188.99 113.88 138.77 163.65 188.54 213.43 238.32 263.20 288.09 312.98 337.87 362.75 387.64 412.53 437.42 462.31 487.19 512.08 536.97 561.63 661.41 686.29 711.18 736.07 760.96 785.84 810.73 835.62 885.39 910.28 935.17 960.06 984.94 1009.83 1034.72 1059.61 1084.94 1109.83 1134.27 1159.16 1184.04 1208.93 1134.27 1159.16 1184.04 1208.93 1233.82 1258.71 1283.59 Cumulative	Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	2.5500000000000000000000000000000000000	\$\begin{array}{cccccccccccccccccccccccccccccccccccc	B.55.87.85.47.05.18.52.09.99.99.76.5.88.88.88.88.88.88.88.88.88.89.99.99.99.	BH 14.10 42.47 53.21 71.89 80.31 80.31 71.16.95 80.31 110.95 110.	Z.5500000000000000000000000000000000000	012233333333333333333333333333333333333
Plume is AT	TACHED to	LEFT	bank/shore.				
Plume wid	th is now	determ	ined from LEFT ban	k/shore	.		
Plume Stage	. Y	Z	S C	BV	ВН	ZU	ZL
1283.59 1297.92 1312.25	305.00 305.00 305.00	4.50 4.50 4.50	2120.2 0.472E-03 2151.4 0.465E-03 2182.8 0.458E-03	1.05 1.06 1.07	610.00 612.09 614.19	4.50 4.50 4.50	3.45 3.44 3.43
1326.58 1340.91	305.00 305.00	4.50 4.50	2214.4 0.452E-03 2246.2 0.445E-03	$\frac{1.09}{1.10}$	616.28 618.37	4.50 4.50	3.41 3.40
1355.23 1369.56	305.00 305.00	4.50 4.50	2278.3 0.439E-03 2310.6 0.433E-03	$\substack{1.11\\1.12}$	620.46 622.55	4.50 4.50	3.39 3.38
			Page 4				

```
dry_u050.prd
2343.1 0.427E-03
                                            4.50
                                                                                                              624.63
                                                                                                                                  4.50
                                                                                                                                                   3.37
    1383.89
                        305.00
                                                                                               1.13
                                            4.50
4.50
                                                        2375.8 0.421E-03
    1398.22
                        305.00
                                                                                               1.15
                                                                                                             626.72
                                                                                                                                  4.50
                                                                                                                                                   3.35
                                                        2475.8 0.421E-03
2408.7 0.415E-03
2441.9 0.410E-03
2475.3 0.404E-03
2508.9 0.399E-03
2542.8 0.393E-03
2576.9 0.388E-03
                                                                                                                                  4.50
4.50
                                                                                                                                                   3.34
    1412.55
                        305.00
                                                                                               1.16
                                                                                                              628.80
                                            4.50
4.50
4.50
4.50
4.50
                                                                                                1.17
    1426.88
                        305.00
                                                                                                              630.88
                                                                                                              632.96
635.04
637.12
639.20
    1441.20
                                                                                               1.18
                                                                                                                                   4.50
                                                                                                                                                   3.32
                        305.00
                                                                                                                                                   3.31
3.29
                        305.00
305.00
305.00
    1455.53
1469.86
                                                                                                                                  4.50
                                                                                                1.19
                                                                                               1.21
                                                                                                                                  4.50
    1484.19
                                                                                                                                  4.50
                                                                                                                                                   3,28
                                                        2611.2 0.383E-03
2645.7 0.378E-03
2680.5 0.373E-03
                                                                                                                                                   3.27
3.26
                                                                                                                                  4.50
                                                                                                              641.27
                                            4.50
                                                                                                1.23
    1498.52
                        305.00
    1512.84
1527.17
                        305.00
305.00
                                            4.50
                                                                                               1.24
1.26
                                                                                                              643.34
                                                                                                                                  4.50
                                                                                                              645.41
                                                                                                                                  4.50
                                                                                                                                                   3.24
                                            4.50
4.50
4.50
4.50
4.50
4.50
                                                       2715.5 0.368E-03
2750.7 0.364E-03
2786.1 0.359E-03
2821.8 0.354E-03
2857.8 0.350E-03
2893.9 0.346E-03
2930.3 0.341E-03
2966.9 0.337E-03
3003.7 0.333E-03
3040.8 0.329E-03
3115.7 0.321E-03
3153.5 0.317E-03
3153.5 0.317E-03
3191.5 0.313E-03
3229.8 0.310E-03
3268.3 0.306E-03
3346.0 0.299E-03
3346.0 0.295E-03
3346.0 0.295E-03
3346.0 0.295E-03
33464.3 0.289E-03
33544.4 0.282E-03
3565.4 0.276E-03
3565.4 0.276E-03
3707.5 0.264E-03
3790.5 0.264E-03
3874.4 0.258E-03
38790.5 0.261E-03
38790.5 0.261E-03
38790.5 0.261E-03
38790.5 0.265E-03
                                                                                                              647.48
649.55
651.62
                                                                                                                                                   3.23
3.22
                                                                                                1.27
                                                                                                                                  4.50
    1541.50
                        305.00
                        305.00
305.00
305.00
                                                                                               1.28
1.29
   1555.83
1570.16
                                                                                                                                  4.50
                                                                                                                                                   3.21
                                                                                                                                  4.50
                                                                                                                                                    3.19
    1584.48
                                                                                                1.31
                                                                                                              653.68
                                                                                                                                  4.50
                                                                                                              655.75
657.81
659.87
                                                                                                                                  4.50
4.50
                        305.00
305.00
    1598.81
                                                                                                1.32
                                                                                                                                                   3.18
                                                                                                                                                   3.17
                                                                                                1.33
    1613.14
    1627.47
                        305.00
                                                                                               1.34
                                                                                                                                  4.50
                                                                                                                                                   3.16
                                            4.50
4.50
4.50
                                                                                                              661.92
                        305.00
305.00
305.00
                                                                                                                                                   3.14
                                                                                                                                  4.50
    1641.80
                                                                                               1.36
   1656.13
1670.45
                                                                                               1.37
1.38
                                                                                                                                  4.50
                                                                                                                                                   3.13
                                                                                                              663.98
                                                                                                                                  4.50
                                                                                                              666.04
                                                                                                                                                   3.12
                                                                                                              668.09
670.14
672.19
                                            4.50
4.50
4.50
                                                                                                                                  4.50
    1684.78
                                                                                                                                                   3.11
                                                                                                1.39
                        305.00
    1699.11
1713.44
                        305.00
305.00
                                                                                                                                                    3.09
                                                                                                1.41
                                                                                                                                  4.50
                                                                                                1.42
                                                                                                                                  4.50
                                                                                                                                                   3.08
                                           4.50
4.50
4.50
4.50
4.50
4.50
   1727.77
1742.09
1756.42
1770.75
                                                                                                              674.24
                        305.00
                                                                                                1.43
                                                                                                                                  4.50
                                                                                                                                                   3.07
                                                                                                              676.29
678.33
                                                                                               1.44
                        305.00
                                                                                                                                  4.50
                                                                                                                                                   3.06
                                                                                                                                  4.50
                        305.00
305.00
                                                                                                1.46
                                                                                                                                                   3.04
                                                                                                                                  4.50
4.50
4.50
                                                                                                              680.37
                                                                                                                                                    3.03
                                                                                                1.47
                        305.00
305.00
                                                                                               1.48
1.50
                                                                                                              682.42
684.46
                                                                                                                                                    3.02
    1785.08
                                                                                                                                                    3.00
    1799.41
    1813.73
                        305.00
                                                                                                1.51
                                                                                                              686.49
                                                                                                                                  4.50
                                                                                                                                                   2.99
                        305.00
305.00
305.00
                                           4.50
4.50
4.50
                                                                                               1.52
                                                                                                                                                   2.98
                                                                                                              688.53
                                                                                                                                  4.50
    1828.06
                                                                                                                                  4.50
                                                                                                                                                   2.97
   1842.39
1856.72
                                                                                               1.53
1.55
                                                                                                              690.57
                                                                                                              692.60
                                                                                                                                   4.50
                                                                                                                                                   2.95
                                                                                                                                  4.50
4.50
4.50
                                                                                                                                                   2.94
2.93
2.91
                                           4.50
4.50
4.50
                                                                                                              694.63
                                                                                                1.56
    1871.05
                        305.00
    1885.38
1899.70
                        305.00
305.00
                                                                                               1.57
1.59
                                                                                                              696.66
                                                                                                              698.69
                                                                                                                                  4.50
                                            4.50
4.50
4.50
                                                                                                                                                   2.90
    1914.03
                        305.00
                                                                                                1.60
                                                                                                              700.71
                                                                                                                                                   2.89
    1928.36
                                                                                                              702.74
                                                                                                                                  4.50
                        305.00
                                                                                                1.61
                                                                                                              704.76
                                                                                                                                  4.50
                                                                                                                                                   2.87
    1942.69
1957.02
                        305.00
305.00
                                                                                                1.63
                                            4.50
4.50
4.50
4.50
                                                                                                1.64
                                                                                                              706.78
                                                                                                                                   4.50
                                                                                                                                                    2.86
                                                                                                                                  4.50
4.50
                                                                                                                                                   2.85
                                                                                                1.65
1.67
                        305.00
                                                                                                              708.80
    1971.34
                                                                                                              710.82
    1985.67
                        305.00
                        305.00
                                                                                                1.68
                                                                                                              712.84
                                                                                                                                   4.50
                                                                                                                                                    2.82
    2000.00
Cumulative travel time =
```

Simulation limit based on maximum specified distance = 2000.00 m. This is the REGION OF INTEREST limitation.

END OF MOD241: BUOYANT AMBIENT SPREADING

dry_u090.prd

CORMIX2 PREDICTION FILE:

```
CORMIX MIXING ZONE EXPERT SYSTEM Subsystem CORMIX2: Multiport Diffuser Discharges
                           CORMIX Version 5.0GT
                       HYDRO2 Version 5.0.1.0 December 2007
CASE DESCRIPTION
 Site name/label:
 Design case:
                     C:\...5928\cormix\Area10b\8port_lower_flow\dry_u090.prd
 FILE NAME:
                     Thu Oct 20 10:31:30 2016
 Time stamp:
ENVIRONMENT PARAMETERS (metric units)
 Unbounded section
                                   4.50
 HA
               4.50
      =
                     HD
 UA
               0.076 F
                                   0.019 USTAR =0.3705E-02
               2.000 UWSTAR=0.2198E-02
 UW
 Uniform density environment
                     RHOAM = 1022.0000
 STRCND= U
DIFFUSER DISCHARGE PARAMETERS (metric units)
Diffuser type:
                     DITYPE= alternating_perpendicular
 BANK =
                     DISTB =
                                                      300.00
                                                              YB2
                                                                          310.00
          LEFT
                                 305.00
                                         YB1
              10.00 NOPEN = 0.045 AO =
                                                        1.43
 LD
                                 8
                                          SPAC
                                   0.002 HO
                           =
                                                        0.00
                                                              SUB0
                                                                            4.50
                                   0.00 SIGMA = 0.013
 Nozzle/port arrangement: alternating_without_fanning
 GAMMA =
              90.00
                     THETA =
                                                        0.00
                                                              BETA
                                                                           90.00
               0.998 Q0
                                                =0.1270E-01
                           =
 RHOO = 1000.0000 DRHOO = 0.2200E+02
                                         GP0
                                                =0.2111E+00
C0 = 0.1000E+01 CUNITS= mg/l IPOLL = 1 KS = 0.0000E+00 KD = 0.0000E+00
FLUX VARIABLES - PER UNIT DIFFUSER LENGTH (metric units) q0 =0.1270E-02 m0 =0.1268E-02 j0 =0.2681E-03
                                                                            1.0
                                                =0.2681E-03
                                                              SIGNJ0=
 Associated 2-d length scales (meters)
       = 0.001 lm
= 99999.00 lbp
 1Q=B =
                           =
                                   0.31
                                          1 m
                                                =
                                                        0.22
                           = 99999.00
                                                   99999.00
 dml
                                         la
FLUX VARIABLES - ENTIRE DIFFUSER (metric units) Q0 =0.1270E-01 M0 =0.1268E-01 J0 =0
                                                =0.2681E-02
 Associated 3-d length scales (meters)
              0.04
                    LM
                           _
                                   0.73
                                         1.m
                                                        1.48
                                                              Lb
                                                                            6.11
                                                   99999.00
                                                                        99999.00
                                         Lmp
                                                              Lbp
NON-DIMENSIONAL PARAMETERS
FR0
             60.90 \text{ FRDO} =
                                  10.24
                                         R
                                                =
                                                      13.13 PL
                                                                           73.
                     (port/nozzle)
 (slot)
RECOMPUTED SOURCE CONDITIONS FOR ALTERNATING JETS OR RISER GROUPS:
Momentum fluxes:
                           =0.8909E-04 MO
                                                =0.8909E-03
                    mΟ
               0.018 TM
                           =
                                   0.02
                                                       0.02
                                                                        99999.00
                                         ٦m
                                                =
                                                              lmp
               0.030 LM
                                                                        99999.00
 LO
      =
                           =
                                   0.10 Lm
                                                       0.39
                                                =
                                                              Lmp
 Properties of riser group with
                                   1 ports/nozzles each:
0.170 AO = 0.
     =
              0.070 DŎ
                    DŌ = FRDO =
uo -
                                                       0.023 THETA =
                                                                           90.00
FR0
              1.13
       =
                                   0.37
                                        R
                                                       0.92
 (slot)
                     (riser group)
FLOW CLASSIFICATION
 2 Flow class (CORMIX2) =
2 Applicable layer depth HS =
                               =
                                     MU8
                                      4.50
 MIXING ZONE / TOXIC DILUTION / REGION OF INTEREST PARAMETERS
C0 = 0.1000E+01 CUNITS= mg/l
```

```
dry_u090.prd
 NSTD = 1
                           CSTD = 0.4700E - 02
 REGMZ =
 = TNIX
              2000.00 XMAX =
                                        2000.00
X-Y-Z COORDINATE SYSTEM:
ORIGIN is located at the bottom and the diffuser mid-point:
305.00 m from the LEFT bank/shore.
X-axis points downstream, Y-axis points to left, Z-axis points upward.
NSTEP = 50 display intervals per module
BEGIN MOD201: DIFFUSER DISCHARGE MODULE
 Due to complex near-field motions: EQUIVALENT SLOT DIFFUSER (2-D) GEOMETRY
 Profile definitions:
    BV = Gaussian 1/e (37%) half-width, in vertical plane normal to trajectory
    BH = top-hat half-width, in horizontal plane normal to trajectory S = hydrodynamic centerline dilution
        = centerline concentration (includes reaction effects, if any)
                                                                 ΒV
                               7
                    0.00
                              0.00
                                          1.0 0.100E+01
        0.00
                                                                0.01
                                                                            5.00
END OF MOD201: DIFFUSER DISCHARGE MODULE
______
BEGIN MOD234: UNSTABLE RECIRCULATION REGION OVER LAYER DEPTH
 INITIAL LOCAL VERTICAL INSTABILITY REGION:
    Bulk dilution (S = 292.49) occurs in a limited region (horizontal extent
          0.30 m) surrounding the discharge location.
  Control volume inflow:
        0.00
                    0.00
                              0.00
                                          1.0 0.100E+01
                                                                0.01
                                                                           5.00
  Control volume outflow:
                                                                 RV
                                                                             BH
        0.30
                              2.25
                                        292.5 0.342E-02
                    0.00
                                                                4.50
END OF MOD234: UNSTABLE RECIRCULATION REGION OVER LAYER DEPTH
BEGIN MOD234a: UPSTREAM SPREADING AFTER NEAR-FIELD INSTABILITY
 UPSTREAM INTRUSION PROPERTIES:
          Upstream intrusion length
                                                                          0.57 m
          X-position of upstream stagnation point =
Thickness in intrusion region =
                                                                         -0.27 m
                                                                          1.22 m
                                                               ==
          Half-width at downstream end
                                                                          7.48 m
          Thickness at downstream end
                                                                          3.54 m
  Control volume inflow:
                               Z
                                                                 RV
                                                                             BH
                    0.00
                              2.25
                                        292.5 0.342E-02
                                                                4.50
                                                                          16.25
** WATER QUALITY STANDARD OR CCC HAS BEEN FOUND **
The pollutant concentration in the plume falls below water quality standard or CCC value of 0.470E-02 due to mixing in this control volume. The actual extent of the zone at whose boundary the water quality standard or the CCC is exceeded will be smaller than the control volume outflow values predicted below.
 Profile definitions:
   BV = top-hat thickness, measured vertically
BH = top-hat half-width, measured horizontally in y-direction
ZU = upper plume boundary (Z-coordinate)
```

dry_u090.prd ZL = lower plume boundary (Z-coordinate) S = hydrodynamic average (bulk) dilution = average (bulk) concentration (includes reaction effects, if any) -0.27 -0.19 4.50 4.50 9999.9 0.000E+00 603.4 0.166E-02 0.00 4.50 4.50 0.00 4.50 0.00 3.91 0.00 6.31 1.21 4.50 294.7 0.339E-02 4.50 3.29 0.24 0.00 15.34 4.50 4.50 4.50 4.50 4.50 293.4 0.341E-02 296.4 0.337E-02 300.8 0.332E-02 4.50 4.50 3.20 2.91 0.66 1.30 1.59 0.00 12.17 1.08 0.00 11.33 4.50 2.49 1.50 0.00 2.01 10.62 305.4 0.327E-02 309.5 0.323E-02 312.6 0.320E-02 1.93 2.35 2.77 2.45 2.84 4.50 2.05 0.00 9.98 4.50 9.41 1.66 0.00 0.00 4.50 3.14 8.88 4.50 1.36 314.7 0.318E-02 315.8 0.317E-02 316.9 0.316E-02 4.50 3.19 0.00 4.50 1.17 3.33 8.38 1.06 3.62 0.00 4.50 3.44 7.92 4.50 4.50 0.96 4.04 0.00 7.48 49.1919 sec Cumulative travel time =

END OF MOD234a: UPSTREAM SPREADING AFTER NEAR-FIELD INSTABILITY

** End of NEAR-FIELD REGION (NFR) **

BEGIN MOD241: BUOYANT AMBIENT SPREADING

Profile definitions:

BV = top-hat thickness, measured vertically BH = top-hat half-width, measured horizontally in y-direction

ZU = upper plume boundary (Z-coordinate)
ZL = lower plume boundary (Z-coordinate)
S = hydrodynamic average (bulk) dilution

= average (bulk) concentration (includes reaction effects, if any)

Plume Stage						 1	71
X 4.04	0.00	Z 4.50	S C 316.9 0.316E-02	BV 3.54	вн 7.48	ZU 4.50	ZL 0.96
43.96	0.00	4.50	410.2 0.244E-02	1.65	20.71	4.50	2.85
83.88	0.00	4.50	455.3 0.220E-02	1.25	30.42	4.50	3.25
123.80	0.00	4.50	490.1 0.204E-02	1.06	38.73	4.50	3.44
163.71	0.00	4.50	521.7 0.192E-02	0.94	46.20	4.50	3.56
203.63	0.00	4.50	553.0 0.181E-02	0.87	53.08	4.50	3.63
243.55	0.00	4.50	585.6 0.171E-02	0.82	59.51	4.50	3.68
283.47	0.00	4.50	620.3 0.161E-02	0.79	65.59	4.50	3.71
323.39	0.00	4.50	657.8 0.152E-02	0.77	71.38	4.50	3.73
363.31	0.00	4.50	698.5 0.143E-02	0.76	76.94	4.50	3.74
403.23	0.00	4.50	742.9 0.135E-02	0.75	82.28	4.50	3.75
443.15	0.00	4.50	791.3 0.126E-02	0.76	87.45	4.50	3.74
483.07	0.00	4.50	843.8 0.119E-02	0.76	92.45	4.50	3.74
522.99	0.00	4.50	900.7 0.111E-02	0.77	97.32	4.50	3.73
562.91	0.00	4.50	962.3 0.104E-02	0.79	102.06	4.50	3.71
602.83	0.00	4.50	1028.7 0.972E-03	0.81	106.69	4.50	3.69
642.75	0.00	4.50	1100.0 0.909E-03	0.83	111.22	4.50	3.67
682.66	0.00	4.50	1176.4 0.850E-03	0.85	115.66	4.50	3.65
722.58	0.00	4.50	1258.1 0.795E-03	0.88	120.01	4.50	3.62
762.50	0.00	4.50	1345.2 0.743E-03	0.90	124.28	4.50	3.60
802.42	0.00	4.50	1437.7 0.696E-03	0.93	128.48	4.50	3.57
842.34	0.00	4.50	1535.9 0.651E-03	0.97	132.61	4.50	3.53
882.26	0.00	4.50	1639.8 0.610E-03	1.00	136.68	4.50	3.50 3.46
922.18	0.00	4.50	1749.5 0.572E-03	1.04	140.69	4.50	3.42
962.10	0.00	4.50	1865.2 0.536E-03 1986.9 0.503E-03	1.08 1.12	144.65	4.50 4.50	3.38
1002.02 1041.94	0.00	4.50 4.50	2114.7 0.473E-03	$\frac{1.12}{1.16}$	148.55 152.41	4.50	3.34
1041.94	0.00	4.50	2248.8 0.445E-03	1.20	156.21	4.50	3.30
1121.78	0.00	4.50	2389.2 0.419E-03	1.25	159.98	4.50	3.25
1161.70	0.00	4.50	2536.0 0.394E-03	1.29	163.70	4.50	3.21
1201.62	0.00	4.50	2689.3 0.372E-03	1.34	167.38	4.50	3.16
1241.53	0.00	4.50	2849.1 0.351E-03	1.39	171.03	4.50	3.11
1281.45	0.00	4.50	3015.7 0.332E-03	1.44	174.64	4.50	3.06

Page 3

			dry_u090.prd				
1321.37	0.00	4.50	3189.0 0.314E-03	1.50	178.21	4.50	3.00
1361.29	0.00	4.50	3369.1 0.297E-03	1.55	181.75	4.50	2.95
1401.21	0.00	4.50	3556.1 0.281E-03	1.60	185.26	4.50	2.90
1441.13	0.00	4.50	3750.0 0.267E-03	1.66	188.73	4.50	2.84
1481.05	0.00	4.50	3951.0 0.253E-03	1.72	192.18	4.50	2.78
1520.97	0.00	4.50	4159.2 0.240E-03	1.78	195.60	4.50	2.72
1560.89	0.00	4.50	4374.5 0.229E-03	1.84	198.99	4.50	2.66
1600.81	0.00	4.50	4597.1 0.218E-03	1.90	202.35	4.50	2.60
1640.73	0.00	4.50	4827.0 0.207E-03	1.96	205.69	4.50	2.54
1680.65	0.00	4.50	5064.3 0.197E-03	2.02	209.00	4.50	2.48
1720.57	0.00	4.50	5309.0 0.188E-03	2.09	212.29	4.50	2.41
1760.49	0.00	4.50	5561.3 0.180E-03	2.16	215.56	4.50	2.34
1800.40	0.00	4.50	5821.1 0.172E-03	2.22	218.80	4.50	2.28
1840.32	0.00	4.50	6088.6 0.164E-03	2,29	222.02	4.50	2.21
1880.24	0.00	4.50	6363.9 0.157E-03	2.36	225.22	4.50	2.14
1920.16	0.00	4.50	6646.9 0.150E-03	2.43	228.39	4.50	2.07
1960.08	0.00	4.50	6937.7 0.144E-03	2.50	231.55	4.50	2.00
2000.00	0.00	4.50	7236.4 0.138E-03	2.58	234.68	4.50	1.92
Cumulative	travel tim	1e =	26311.8594 sec				

Simulation limit based on maximum specified distance = 2000.00 m. This is the REGION OF INTEREST limitation.

END OF MOD241: BUOYANT AMBIENT SPREADING

wet_u010.prd

```
CORMIX2 PREDICTION FILE:
CORMIX MIXING ZONE EXPERT SYSTEM
         Subsystem CORMIX2: Multiport Diffuser Discharges
                        CORMIX Version 5.0GT
                     HYDRO2 Version 5.0.1.0 December 2007
CASE DESCRIPTION
 Site name/label:
 Design case:
                   C:\...5928\cormix\Area10b\8port_lower_flow\wet_u010.prd
 FILE NAME:
 Time stamp:
                   Thu Oct 20 10:31:43 2016
ENVIRONMENT PARAMETERS (metric units)
 Unbounded section
             4.50
                                4.50
 HA
      =
                   HD
 υΑ
             0.013 F
                                0.019 \text{ USTAR} = 0.6338E-03
             2.000 UWSTAR=0.2198E-02
      =
 Density stratified environment
 STRCND= A RHOAM = 1017.3500
RHOAS = 1017.0000 RHOAB = 1017.7000 RHOAH0= 1017.7000 E
                                                              =0.1499E-02
DIFFUSER DISCHARGE PARAMETERS (metric units)
                   DITYPE= alternating_perpendicular
Diffuser type:
                   DISTB =
                              305.00
                                     YB1
                                                300.00
                                                        YB2
                                                                   310.00
             10.00 NOPEN = 0.045 A0 =
            10.00
                              8
                                     SPAC
                                                  1.43
 LD
      =
                                           =
                                0.002 HO
 00
                                                  0.00
                                                        SUB0
                                                                     4.50
 Nozzle/port arrangement: alternating_without_fanning
                                                  0.ŏo
            90.00
                   THETA =
                               0.00
 GAMMA =
                                     SIGMA =
                                                                    90.00
                                                        BETA
             0.998 Q0
                                0.013
                                           =0.1270E-01
 110
 RHOO = 1000.0000 DRHOO =0.1770E+02 GPO =0.1706E+00
     =0.1000E+01 CUNITS= mg/l
 c_0
                         =0.0000E+00 KD =0.0000E+00
 IPOLL =
                   KS
FLUX VARIABLES - PER UNIT DIFFUSER LENGTH (metric units)
                        =0.1268E-02
      =0.1270E-02 m0
                                     j0
                                           =0.2166E-03
                                                        SIGNJ0=
                                                                     1.0
 Associated 2-d length scales (meters)
             0.001 lm
0.95 lbp
 1Q=B =
                       =
                                0.35
                                      ٦m
                                                  7.50
                                1.55
                                     1a
                                                  0.34
                                           =
FLUX VARIABLES - ENTIRE DIFFUSER (metric units)
Q0 =0.1270E-01 M0 =0.1268E-01
                                     J0
                                           =0.2166E-02
 Associated 3-d length scales (meters)
             0.04 LM
                               0.81
                                                                   985.93
                        ==
                                     Lm
                                                  8.66
                                                        Lb
                                                                     2.47
                                      Lmp
                                                  1.71
                                                        Lbp
NON-DIMENSIONAL PARAMETERS
FR0 =
                               11.39 R
                                                                    68.
            67.76 \text{ FRD0} =
                                           =
                                                 76.78
                                                        PL
 (slot)
                   (port/nozzle)
RECOMPUTED SOURCE CONDITIONS FOR ALTERNATING JETS OR RISER GROUPS:
             tes: m0
0.020 lm
                       =0.8181E-04 MO
Momentum fluxes:
                                           =0.8181E-03
                                                                     0.38
                               0.02
                                                  0.48
 10=B =
                        _
                                     7 m
                                                        lmp
             0.029 LM
                        =
                               0.10
                                    Lm
                                                                     0.86
                                                  2.20
                                                        Lmp
Properties of riser group with U0 = 0.064 D0 =
                              1 ports/nozzles each:
             0.064 \, D\tilde{0} = 1.11 \, FRD0 =
                                                  0.025 THETA =
                                                                    90.00
                               0.177 AO
                                           =
FR0
                               0.37 R
                                                  4.95
 (slot)
                   (riser group)
FLOW CLASSIFICATION
```

Page 1

MIXING ZONE / TOXIC DILUTION / REGION OF INTEREST PARAMETERS

=0.1000E+01 CUNITS= mg/1

```
wet_u010.prd
 NTOX = 0
 NSTD =
            1
                         CSTD = 0.4700E-02
 REGMZ =
            2000.00 \text{ XMAX} =
                                      2000.00
 XINT =
X-Y-Z COORDINATE SYSTEM:
     ORIGIN is located at the bottom and the diffuser mid-point:
305.00 m from the LEFT bank/shore.

X-axis points downstream, Y-axis points to left, Z-axis points upward.

NSTEP = 50 display intervals per module
                    BEGIN MOD101: DISCHARGE MODULE (SINGLE PORT AT DIFFUSER CENTER)
                                                   C
                                                             BV
                   0.00
                             0.00
                                        1.0 0.100E+01
                                                            0.09
END OF MOD101: DISCHARGE MODULE (SINGLE PORT AT DIFFUSER CENTER)
BEGIN CORJET (MOD110): JET/PLUME NEAR-FIELD MIXING REGION
 Plume-like motion in linear stratification with weak crossflow.
                                                                 85.22 SIGMAE=
0.00 ZE =
 Zone of flow establishment:
                                                  THETAE=
                  0.12 XE =
                                          0.00 YE =
  LE
                                                                                          0.12
 Profile definitions:
   BV = Gaussian 1/e (37%) half-width, in vertical plane normal to trajectory
BH = before merging: Gaussian 1/e (37%) half-width in horizontal plane
normal to trajectory
after merging: top-hat half-width in horizontal plane
parallel to diffuser line
   S == hydrodynamic centerline dilution
      = centerline concentration (includes reaction effects, if any)
                                                             RV
                                         S
                                                                         BH
  Individual jet/plumes before merging:
0.00 0.00 0.12 1.0 0.100E+01
0.00 0.00 0.12 1.0 0.100E+01
0.12 0.00 0.35 1.9 0.532E+00
                                                                       0.09
                                                            0.09
                                                            0.09
                                                                       0.09
                                        1.9 0.532E+00
3.6 0.280E+00
                                                            0.07
                                                                       0.07
       0.28
                  0.00
                            0.56
                                                            0.11
                                                                       0.11
                                      5.6 0.178E+00
7.9 0.127E+00
10.3 0.971E-01
       0.46
                  0.00
                            0.75
                                                            0.14
                                                                       0.14
       0.65
                  0.00
                            0.93
                                                            0.17
                                                                       0.17
                            1.07
       0.87
                  0.00
                                                            0.20
                                                                       0.20
                                      12.7 0.786E-01
       1.10
                  0.00
                            1.20
                                                            0.23
                                                                       0.23
                                      15.2 0.659E-01
17.6 0.568E-01
                  0.00
                            1.31
                                                            0.26
                                                                       0.26
       1.58
                  0.00
                            1.40
                            1.48
                                       20.0 0.499E-01
                  0.00
                                                            0.32
                                                                       0.32
       2.08
                  0.00
                            1.55
                                       22.4 0.446E-01
                                                            0.34
                                                                       0.34
       2.34
                  0.00
                            1.61
                                       24.8 0.403E-01
                                                            0.37
       2.60
                            1.66
                                       27.2 0.367E-01
                  0.00
                                                            0.39
                                                                       0.39
       2.86
                  0.00
                                       29.6 0.338E-01
                            1.71
                                                            0.41
                                                                       0.41
                                      32.0 0.313E-01
34.4 0.291E-01
       3.11
                  0.00
                                                                       0.44
                            1.75
                                                            0.44
                            1.80
                  0.00
                                                            0.46
       3.63
                  0.00
                            1.84
                                       36.8 0.272E-01
                                                            0.48
       3.89
                  0.00
                            1.88
                                       39.3 0.254E-01
                                                            0.51
                                                                       0.51
                                      41.8 0.239E-01
       4.15
                  0.00
                            1.92
                                                            0.53
       4.41
                  0.00
                            1.96
                                      44.4 0.225E-01
                                                            0.55
                  0.00
                            1.99
       4.67
                                      47.0 0.213E-01
                                                            0.58
                                                                       0.58
                                      49.6 0.202E-01
52.2 0.192E-01
       4.93
                  0.00
                             2.03
                                                            0.60
                  0.00
                            2.07
                                                            0.62
                                                                       0,62
                                      54.9 0.182E-01
57.6 0.174E-01
       5.45
                  0.00
                            2.10
                                                            0.64
                                                                       0.64
```

)]

(1)

傳』 1 □■

(**2**) ...

Merging of individual jet/plumes to form plane jet/plume: 6.28 0.00 2.21 82.5 0.121E-01 0.90 5.9 Page 2

60.3 0.166E-01

63.0 0.159E-01

0.66

0.69

0.71

0.66

0.69

0.71

5.90

2.14

2.17

2.20

0.00

0.00

0.00

5.71

5.97

```
2.28
2.31
2.33
2.36
                                                   92.8 0.108E-01
                                                                               1.05
                        0.00
                                                                                              6.05
                                                  94.5 0.106E-01
96.2 0.104E-01
97.8 0.102E-01
                                      2.38
          8.06
                        0.00
                                                                               1.08
                                                                                              6.08
         8.32
8.58
                                      2.40
                        0.00
                                                                               1.11
                                                                                              6.11
                                      2.43
                                                                               1.13
                        0.00
                                                                                              6.13
          8.84
                        0.00
                                      2.45
                                                  99.5 0.101E-01
                                                                               1.16
                                                                                              6.16
                                     2.47
2.49
2.51
                                                 101.1 0.990E-02
102.6 0.974E-02
104.2 0.960E-02
                                                                               1.19
          9.10
                                                                                              6.19
                        0.00
          9.36
                        0.00
                                                                                              6.22
                                                                               1.25
                                                                                              6.25
          9.62
                        0.00
                                                104.2 0.960E-02
105.7 0.946E-02
107.2 0.932E-02
108.7 0.920E-02
110.2 0.908E-02
111.6 0.896E-02
113.0 0.885E-02
                                     2.52
         9.89
                        0.00
                                                                               1.28
                                                                                              6.28
        10.15
                        0.00
                                                                               1.31
                                     2.56
                                                                               1.34
        10.41
                                                                                              6,34
                        0.00
                                     2.57
2.59
2.60
                                                                               1.37
        10.67
                        0.00
                                                                                              6.37
        10.93
                        0.00
                                                                               1.39
                                                                                              6.39
                                                                                              6.42
        11.20
                                                                               1.42
                        0.00
                                                 114.4 0.874E-02
115.7 0.864E-02
117.0 0.855E-02
                                     2.61
                                                                               1.45
                                                                                              6.45
        11.46
                        0.00
                                      2.62
                                                                               1.48
                                                                                              6.48
        11.72
                        0.00
                                     2.63
                                                                               1.51
                        0.00
        11.98
                                                                                              6.51
                                     2.64
2.64
        12.24
                        0.00
                                                 118.2 0.846E-02
                                                                               1.53
                                                                                              6.53
                                                 119.4 0.838E-02
                                                                               1.56
                        0.00
        12.50
 Terminal level in stratified ambient has been reached. Cumulative travel time = 157.1202 sec
END OF CORJET (MOD110): JET/PLUME NEAR-FIELD MIXING REGION
BEGIN MOD236: TERMINAL LAYER IMPINGEMENT/UPSTREAM SPREADING
   Vertical angle of layer/boundary impingement =
Horizontal angle of layer/boundary impingement =
                                                                                               1.24 deg
                                                                                              0.00 deg
 UPSTREAM INTRUSION PROPERTIES:
            Maximum elevation of jet/plume rise
Layer thickness in impingement region
Upstream intrusion length
                                                                                          4.07 m
                                                                            =
                                                                                          0.81 m
                                                                                          5.64 m
            X-position of upstream stagnation point =
Thickness in intrusion region =
Half-width at downstream end =
                                                                                          6.86 m
                                                                                          0.81 m
                                                                                         44.78 m
             Thickness at downstream end
                                                                                          1.62 m
   Control volume inflow:
                                       Z
                                                                               ΒV
                                                                                               BH
                                     2.64
                                                119.4 0.838E-02
        12.50
                        0.00
                                                                               1.56
 Profile definitions:
    BV = top-hat thickness, measured vertically
BH = top-hat half-width, measured horizontally in y-direction
ZU = upper plume boundary (Z-coordinate)
ZL = lower plume boundary (Z-coordinate)
S = hydrodynamic average (bulk) dilution
C = average (bulk) concentration (includes reaction effects, if any)
                                                                                RV
                                                                                                            711
                                                                                                                          71
                                  2.64 9999.9 0.000E+00
                        0.00
                                                                            0.00
                                                                                              0.00
                                                                                                           2.64
                                                                                                                        2.64
** WATER QUALITY STANDARD OR CCC HAS BEEN FOUND **

The pollutant concentration in the plume falls below water quality standard or CCC value of 0.470E-02 in the current prediction interval.
 This is the spatial extent of concentrations exceeding the water quality standard or CCC value.

7.42 0.00 2.64 302.9 0.330E-02 0.32 6.33 2.80
                                   2.64
2.64
2.64
2.64
                                                 133.8 0.747E-02
119.4 0.837E-02
        10.17
                                                                                            15.38
31.56
                                                                                                                        2.28
                                                                               0.72
                        0.00
                                                                                                           3.00
                                                                               0.81
                        0.00
                                                                                                           3.05
        12.92
        15.66
                        0.00
                                                 121.6 0.822E-02
                                                                               0.87
                                                                                            33.92
                                                                                                           3.08
                                                                                                                        2.21
                                                 126.5 0.790E-02
132.6 0.754E-02
                                                                               1.00
                        0.00
                                                                                            35.94
                                                                                                           3.14
                                      2.64
        18.41
                                                                                                                        2.14
        21.16
                        0.00
                                      2.64
                                                                               1.17
                                                                                            37.72
                                                                                                                        2.06
                                                             Page 3
```

wet_u010.prd 85.8 0.117E-01 87.6 0.114E-01

89.4 0.112E-01

91.1 0.110E-01

0.94

0.97

1.00

1.02

5.94

5.97

6.00

6.02

2.26

0.00

0.00

0.00

0.00

6.75

7.01

7.27

7.53

```
wet_u010.prd
                           2.64
2.64
2.64
                                        138.3 0.723E-02
142.7 0.701E-02
145.7 0.687E-02
                                                                           39.34
                                                                                        3.31
3.37
      23.90
                    0.00
                                                                1.33
                                                                                                   1.98
      26.65
                    0.00
                                                                1.46
                                                                           40.83
                                                                                                   1.91
                                                                            42.23
                                                                                        3.41
                                                                                                   1.87
                                                                1.54
                    0.00
      29.40
                                                                           43.54
                                                                 1.58
                                                                                                   1.85
                                        147.3 0.679E-02
148.7 0.673E-02
                                                                                        3.43
      32.15
                    0.00
                               2.64
                                                                                        3.45
                               2.64
                                                                            44.78
      34.89
                    0.00
                                                                1.62
                                            1879.2767 sec
 Cumulative travel time =
END OF MOD236: TERMINAL LAYER IMPINGEMENT/UPSTREAM SPREADING
** End of NEAR-FIELD REGION (NFR) **
BEGIN MOD242: BUOYANT TERMINAL LAYER SPREADING
 Profile definitions:
   BV = top-hat thickness, measured vertically
BH = top-hat half-width, measured horizontally in y-direction
   ZU = upper plume boundary (Z-coordinate)
ZL = lower plume boundary (Z-coordinate)
S = hydrodynamic average (bulk) dilution
C = average (bulk) concentration (includes reaction effects, if any)
 Plume Stage 1 (not bank attached):
                                                                              BH
                                                                                         ZU
                                                       C
                                                                                        3.45
                                        148.7 0.673E-02
159.6 0.627E-02
                                                                           44.78
59.27
                               2.64
                                                                                                   1.83
      34.89
                    0.00
                                                                1.62
                                                                1.32
1.15
                                                                                                   1.98
      39.53
44.16
                               2.64
                    0.00
                                                                                                   2.07
                                                                                        3.22
                                        167.3 0.598E-02
                                                                            71.33
                    0.00
                                        173.4 0.577E-02
178.4 0.560E-02
182.8 0.547E-02
186.7 0.536E-02
190.1 0.526E-02
193.4 0.517E-02
                                                                            81.90
                                                                 1.03
                                                                                        3.16
                                                                                                   2.13
                               2.64
      48.80
                    0.00
                                                                                        3.12
      53.43
                                                                            91.43
                    0.00
                                                                 0.95
                                                                                        3.09
                                                                 0.89
                                                                          100.18
                               2.64
       58.06
                    0.00
                                                                          108.31
115.93
                                                                                        3.06
      62.70
                    0.00
                               2.64
                                                                 0.84
                                                                                        3.04
                    0.00
                                                                 0.80
                               2.64
      67.33
                                                                          123.13
                                                                                        3.03
      71.97
                               2.64
                                                                 0.77
                    0.00
                                        196.3 0.509E-02
                                                                          129.96
                                                                                        3.01
                               2.64
                                                                 0.74
      76.60
                    0.00
                                        199.2 0.502E-02
201.8 0.495E-02
204.4 0.489E-02
                                                                                                   2.29
                                                                 0.71
                                                                                        3.00
      81.24
                    0.00
                                                                          136.49
                               2.64
                                                                          142.74
                                                                                        2.99
                                                                                                   2.30
                               2.64
                                                                 0.69
      85.87
                    0.00
                                                                                        2.98
                                                                 0.67
                                                                          148.75
      90.50
                    0.00
                                        206.8 0.483E-02
209.2 0.478E-02
211.5 0.473E-02
                                                                                        2.97
                                                                 0.65
                                                                          154.55
                    0.00
                               2.64
      95.14
                                                                                        2.96
                                                                                                   2.32
                                                                          160.15
                                                                 0.64
      99.77
                    0.00
                               2.64
                                                                                        2.95
                                                                                                   2.33
                               2.64
                                                                 0.62
                                                                          165.58
     104.41
                    0.00
                                        213.8 0.468E-02
216.0 0.463E-02
218.2 0.458E-02
                                                                          170.85
                                                                                                   2.34
                                                                 0.61
                                                                                        2.95
     109.04
                    0.00
                               2.64
                                                                          175.97
                                                                                        2.94
                                                                                                   2.34
                               2.64
     113.68
                    0.00
                                                                 0.60
                                                                                        2.94
                                                                          180.96
                                                                 0.59
     118.31
                    0.00
                                        220.4 0.454E-02
222.6 0.449E-02
224.7 0.445E-02
                                                                          185.83
190.59
                                                                                        2.93
2.93
                                                                 0.58
     122.94
                    0.00
                               2.64
                               2.64
2.64
                    0.00
                                                                 0.57
     127.58
                                                                                        2.92
                                                                 0.56
                                                                          195.24
                                                                                                   2.36
     132.21
                    0.00
                                                                                        2.92
                                                                          199.80
                                                                                                   2.37
                               2.64
                                        226.8 0.441E-02
                                                                 0.55
     136.85
                    0.00
                                                                                        2.92
                                        229.0 0.437E-02
                                                                                                   2.37
                                                                 0.55
                                                                          204.26
                    0.00
     141.48
                               2.64
                                        231.1 0.433E-02
233.2 0.429E-02
                                                                                        2.91
                                                                                                   2.37
                                                                 0.54
                                                                          208.64
     146.12
                    0.00
                               2.64
                                                                          212.95
                                                                                        2.91
                               2.64
                                                                 0.53
     150.75
                    0.00
                                        235.3 0.425E-02
237.5 0.421E-02
                                                                 0.53
0.52
                                                                                        2.91
                                                                          217.18
     155.38
                    0.00
                               2.64
                                                                          221.34
225.44
                                                                                        2.90
                                                                                                   2.38
     160.02
                               2.64
                    0.00
                                                                                        2.90
                                                                                                   2.38
                               2.64
                                        239.6 0.417E-02
                                                                 0.52
     164.65
                    0.00
                                                                 0.51
0.51
                                                                          229.48
                                                                                                   2.39
                                                                                        2.90
                                         241.8 0.414E-02
     169.29
                    0.00
                               2.64
                                                                                                   2.39
                               2.64
2.64
                                                                           233.46
                                                                                        2.90
                    0.00
                                         243.9 0.410E-02
     173.92
                                                                                        2.90
                                                                 0.51
                                                                          237.39
                                         246.1 0.406E-02
                    0.00
     178.56
                                                                          241.27
                                                                                        2.89
                                         248.3 0.403E-02
                                                                 0.50
     183.19
                    0.00
                               2.64
                                                                                        2.89
                                        250.5 0.399E-02
252.8 0.396E-02
                                                                           245.10
                                                                 0.50
                    0.00
                               2.64
     187.82
                                                                 0.50
                                                                          248.89
                                                                                        2.89
                               2.64
     192.46
                    0.00
                                                                                        2.89
                                                                                                   2.40
                                                                 0.49
                                                                           252.63
                               2.64
                                         255.0 0.392E-02
     197.09
                    0.00
                                        257.3 0.389E-02
259.5 0.385E-02
                                                                                                   2.40
                                                                                        2.89
                                                                 0.49
                                                                           256.34
                    0.00
                               2.64
     201.73
                                                                                                   2.40
                                                                 0.49
                                                                          260.01
                                                                                        2.89
     206.36
                    0.00
                               2.64
                                                                                        2.89
                                                                                                   2.40
                                                                 0.49
                                                                           263.64
     211.00
                    0.00
                               2.64
                                         261.8 0.382E-02
                                                                 0.48
                                                                           267.24
                                                                                        2.88
                                         264.1 0.379E-02
                    0.00
                               2.64
     215.63
                                                                 0.48
                                                                                        2.88
                                                                           270.80
                                                                                                   2.40
                                         266.5 0.375E-02
                               2.64
     220.26
                    0.00
                                                                                        2.88
                                                                                                   2.40
                                        268.8 0.372E-02
                                                                           274.34
                                                                 0.48
                               2.64
      224.90
                    0.00
                                        271.2 0.369E-02
273.6 0.366E-02
                                                                                                   2.40
                                                                           277.85
                                                                                        2.88
                                                                 0.48
     229.53
                    0.00
                               2.64
```

Page 4

276.0 0.362E-02

2.64

2.64

0.00

0.00

234.17

238.80

281.33

284.78

0.48

0.47

2.88

2.88

2.40

243.44 248.07 252.70 257.34 261.97 266.61 Cumulative	0.00 0.00 0.00 0.00 0.00 0.00 travel ti	2.64	wet_u010.prd 278.4 0.359E-02 280.9 0.356E-02 283.4 0.353E-02 285.9 0.350E-02 288.4 0.347E-02 290.9 0.344E-02 19703.4395 sec	0.47	288.21 291.62 295.00 298.36 301.70 305.03	2.88 2.88 2.88 2.88 2.88 2.88	2.41 2.41 2.41 2.41 2.41 2.41
Plume is Al	TACHED to	LEFT	bank/shore. ined from LEFT ban	k/shor	e.		
Plume Stage X 266.61 301.27 335.61 405.28 439.95 474.61 509.28 543.95 578.62 613.29 647.95 682.62 717.29 751.96 786.62 821.29 855.63 925.30 959.96 1029.30 1063.97 1098.64 1133.37 1271.97 1202.64 11375.98 1410.65 1445.31 1479.98 1514.63 1514.63 1514.63 1514.63 1514.63 1514.63 1514.63 1514.63 1514.63 1514.63 1514.63 1514.63 1514.63 1514.63 1514.63 1514.63 1514.63 1687.99 1722.66 1861.33 1896.66 1965.33 2000.00 Cumulative	Y 305.00	Z .6644444444444444444444444444444444444	S C 290.9 0.344E-02 306.2 0.327E-02 321.6 0.311E-02 337.0 0.297E-02 352.5 0.284E-02 368.1 0.272E-02 383.8 0.261E-02 389.6 0.250E-02 415.6 0.241E-02 431.6 0.232E-02 447.8 0.223E-02 447.8 0.223E-02 447.8 0.223E-02 454.1 0.215E-02 480.6 0.208E-02 497.2 0.201E-02 513.9 0.195E-02 530.7 0.188E-02 547.7 0.183E-02 547.7 0.183E-02 547.7 0.183E-02 547.7 0.158E-02 652.4 0.153E-02 670.4 0.149E-02 688.4 0.145E-02 706.6 0.142E-02 724.9 0.138E-02 743.3 0.135E-02 743.3 0.135E-02 761.8 0.131E-02	8.444.490 0.00000000000000000000000000000	BH 610.00 630.24 650.74 671.38 713.46 773.53 777.53 799.11 820.78 842.54 886.27 908.24 930.24 941.14 1063.44 1063.47 1130.59 1175.45 1152.99 1175.95 1175.95 1188.15 1188.17 1188.17 1188.17 1188.17 1188.17 1199	22.22.22.22.23.33.33.44.44.44.55.55.56.66.66.77.77.78.88.89.99.00.11.11.22.22.22.22.22.22.22.22.22.22.22.	ZL411 2.441

 $\begin{tabular}{ll} wet_u010.prd\\ This is the REGION OF INTEREST \\ limitation. \\ \end{tabular}$

END OF MOD242: BUOYANT TERMINAL LAYER SPREADING

wet_u050.prd CORMIX2 PREDICTION FILE: CORMIX MIXING ZONE EXPERT SYSTEM Subsystem CORMIX2: Multiport Diffuser Discharges CORMIX Version 5.0GT HYDRO2 Version 5.0.1.0 December 2007 CASE DESCRIPTION Site name/label: Design case: C:\...5928\cormix\Area10b\8port_lower_flow\wet_u050.prd FILE NAME: Thu Oct 20 10:32:29 2016 Time stamp: **ENVIRONMENT PARAMETERS (metric units)** Unbounded section HA = 4.50 4.50 UA 0.042 F 0.019 USTAR = 0.2048E-02= 2.000 UWSTAR=0.2198E-02 Density stratified environment STRCND= A RHOAM = 1017.3500 RHOAS = 1017.0000 RHOAB = 1017.7000 RHOAH0 = 1017.7000 E=0.1499E-02DIFFUSER DISCHARGE PARAMETERS (metric units) DITYPE= alternating_perpendicular DISTB = 305.00 YB1 = 300 Diffuser type: 300.00 BANK = LEFT YB2 310.00 10.00 NOPEN = 0.045 A0 = 10.00 8 **SPAC** 1 D = = 1.43 DO = 0.045 AO = 0.002 HO = 0.00 Nozzle/port arrangement: alternating_without_fanning 0.00 SUB0 4.50 GAMMA = 90.00 THETA = 0.00 SIGMA = 0.00 **BETA** 90.00 0.998 Q0 = 0.013 =0.1270E-01RHOO = 1000.0000 DRHOO = 0.1770E+02GP0 =0.1706E+00=0.1000E+01CO CUNITS= mg/l IPOLL = 1KS =0.0000E+00 KD =0.0000E+00FLUX VARIABLES - PER UNIT DIFFUSER LENGTH (metric units) q0 =0.1270E-02 m0 =0.1268E-02 Associated 2-d length scales (meters) SIGNJO= =0.2166E-031.0 j0 0.001 M 0.35 1 m 1Q=B = = 0.72 lmp 0.95 1bp 1.55 1.08 = = ٦a FLUX VARIABLES - ENTIRE DIFFUSER (metric units) QO =0.1270E-01 MO =0.1268E-01 JO Associated 3-d length scales (meters) =0.2166E-020.04 LM LQ 0.81 2.68 Lb 29.24 Lm 1.71 Lbp 2.47 Lmp NON-DIMENSIONAL PARAMETERS FR0 = 67.76 FRD0 =11.39 R 23.77 PL 68. (slot) (port/nozzle) RECOMPUTED SOURCE CONDITIONS FOR ALTERNATING JETS OR RISER GROUPS: Momentum fluxes: =0.8181E-04 M0 mΟ =0.8181E-030.020 1M = 1Q=B = 0.02 ٦m 0.05 0.38 1mp 0.029 LM = 0.10 Lm 0.68 0.86 Lmp Properties of riser group with 1 ports/nozzles each: 0.064 D0 = 0.177 A0 = 0.064 D0 = 0.177 A0 = 0.064 D0 = 0.177 A0 = 0.064 D0 = 0.0640.025 THETA = 90.00 1.53 (slot) (riser group) FLOW CLASSIFICATION

Page 1

MIXING ZONE / TOXIC DILUTION / REGION OF INTEREST PARAMETERS

CO = 0.1000E + 01 CUNITS = mg/1

```
wet_u050.prd

NTOX = 0

NSTD = 1

                      CSTD = 0.4700E - 02
 REGMZ =
           0
            2000.00 XMAX =
                                 2000.00
 XINT
X-Y-Z COORDINATE SYSTEM:
    ORIGIN is located at the bottom and the diffuser mid-point:
    305.00 m from the LEFT bank/shore.
X-axis points downstream, Y-axis points to left, Z-axis points upward.
NSTEP = 50 display intervals per module
BEGIN MOD101: DISCHARGE MODULE (SINGLE PORT AT DIFFUSER CENTER)
                                              C
                                                      ВV
                         0.00
                 0.00
                                   1.0 0.100E+01 0.09
END OF MOD101: DISCHARGE MODULE (SINGLE PORT AT DIFFUSER CENTER)
BEGIN CORJET (MOD110): JET/PLUME NEAR-FIELD MIXING REGION
 Plume-like motion in linear stratification with strong crossflow.
                                                          74.89 SIGMAE=
0.00 ZE =
 Zone of flow establishment:
                                            THETAE=
                                                                                0.00
                0.00 XE
                                      0.00 \text{ YE} =
 LE
                                                                                0.00
 Profile definitions:
   BV = Gaussian 1/e (37%) half-width, in vertical plane normal to trajectory BH = before merging: Gaussian 1/e (37%) half-width in horizontal plane
                         normal to trajectory
top-hat half-width in horizontal plane
         after merging:
                           parallel to diffuser line
      = hydrodynamic centerline dilution
      = centerline concentration (includes reaction effects, if any)
  Individual jet/plumes before merging:
      0.00
                0.00
                         0.00 1.0 0.100E+01
                                                     0.09
                                                               0.09
      0.62
                0.00
                         0.21
                                   3.2 0.316E+00
                                                               0.10
                                                     0.10
                                   6.5 0.154E+00
                                                     0.16
      1.26
                0.00
                         0.38
                                                               0.16
                                                     0.20
      1.91
                0.00
                         0.50
                                  10.3 0.972E-01
                                                               0.20
                0.00
                                  14.3 0.699E-01
                                                     0.25
      2.56
                         0.58
                                                               0.25
                                  18.5 0.541E-01
22.7 0.440E-01
      3.21
                0.00
                         0.65
                                                               0.29
      3.87
                0.00
                                                     0.33
                         0.71
                                                               0.33
                                  27.0 0.370E-01
      4.53
                0.00
                         0.76
                                                     0.37
                                  31.3 0.319E-01
35.7 0.280E-01
                                                     0.40
      5.18
                0.00
                         0.80
                                                               0.40
                0.00
      5.84
                         0.83
                                                     0.44
                                                               0.44
      6.50
                0.00
                         0.86
                                  40.2 0.249E-01
                                                     0.47
                                                               0.47
                                  44.7 0.224E-01
49.4 0.203E-01
      7.16
                0.00
                         0.90
                                                     0.50
                                                               0.50
                         0.93
      7.82
                0.00
                                                     0.53
                                                               0.53
                                                     0.56
                0.00
                         0.96
                                  54.1 0.185E-01
      8.47
                                                               0.56
                                  58.9 0.170E-01
63.7 0.157E-01
68.6 0.146E-01
                0.00
                         0.99
      9.13
                                                     0.59
                                                               0.59
      9.79
                0.00
                         1.02
                                                               0.61
                                                     0.61
     10.45
                0.00
                         1.04
                                                               0.64
                                                     0.64
                                  73.6 0.136E-01
78.6 0.127E-01
                         1.07
     11.11
                0.00
                                                     0.67
                                                               0.67
```

Page 2

111.6 0.896E-02 114.7 0.872E-02 117.7 0.849E-02

120.7 0.828E-02

123.7 0.808E-02 126.6 0.790E-02

129.5 0.772E-02

0.69

0.99

1.02

1.05

1.08

1.11

1.17

0.69

5.90 5.93 5.96

5.99

6.02

6.05

6.08

6.11

6.17

11.76

14.40

15.05

15.71

16.37

17.03

17.69

18.35

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.10

1.17

1.19

1.21

1.23

1.26

1.28

1.30

1.32

Merging of individual jet/plumes to form plane jet/plume: 12.29 0.00 1.12 101.6 0.984E-02 0.90 5.1 13.08 0.00 1.15 105.4 0.949E-02 0.93 5.1 13.74 0.00 1.17 108.6 0.921E-02 0.96 5.1

```
135.1 0.740E-02
137.9 0.725E-02
140.6 0.711E-02
                                    1.35
        19.66
                       0.00
                                                                          1.23
                                                                                        6.23
                                                                          1.26
1.29
                                                                                        6.26
        20.32
                       0.00
        20.98
                       0.00
                                    1.39
        21.64
                       0.00
                                    1.41
                                              143.3 0.698E-02
                                                                          1.32
                                                                                        6.32
                                              145.9 0.686E-02
148.4 0.674E-02
150.9 0.662E-02
                                                                          1.35
1.37
        22.30
                       0.00
                                   1.42
        22.96
                       0.00
                                    1.44
        23.62
                       0.00
                                   1.45
                                                                          1.40
                                              150.9 0.662E-02
153.4 0.652E-02
155.8 0.642E-02
158.2 0.632E-02
160.5 0.623E-02
162.7 0.615E-02
164.9 0.606E-02
167.1 0.599E-02
                                   1.47
                                                                          1.43
        24.28
                       0.00
        24.93
                       0.00
                                    1.48
                                                                          1.45
                                                                                        6.45
                                                                          1.48
        25.59
                       0.00
                                   1.50
                                                                                        6.48
        26.25
                       0.00
                                    1.51
                                                                          1.51
                                   1.52
1.53
        26.91
                       0.00
                                                                          1.53
        27.57
                       0.00
                                                                          1.56
                                                                                        6.56
                                    1.54
        28.23
                       0.00
                                                                          1.58
                       0.00
                                   1.55
                                                                          1.61
        28.89
                                              169.1 0.591E-02
                                                                                        6.61
        29.55
                                              171.1 0.584E-02
                                                                          1.63
                                                                                        6.63
                                              173.1 0.578E-02
175.0 0.571E-02
176.8 0.565E-02
178.6 0.560E-02
                                   1.57
1.57
1.58
        30.21
                       0.00
                                                                          1.65
                                                                                        6.65
        30.86
                                                                          1.67
                       0.00
                                                                                        6.67
                                                                          1.70
        31.52
                       0.00
                                                                                        6.70
        32.18
                       0.00
                                   1.58
                                                                          1.72
                                                                                        6.72
   32.84 0.00 1.58 180.3 0.555E-02 1.74

Terminal level in stratified ambient has been reached.

Cumulative travel time = 442.4950 sec
  Cumulative travel time =
END OF CORJET (MOD110): JET/PLUME NEAR-FIELD MIXING REGION
BEGIN MOD235: LAYER/BOUNDARY/TERMINAL LAYER APPROACH
   Control volume inflow:
                                   Z S C'
1.58 180.3 0.555E-02
                                                                           ΒV
                                                                          1.74
        32.84
                       0.00
                                                                                        6.74
 Profile definitions:
    BV = top-hat thickness, measured vertically
    BH = top-hat half-width, measured horizontally in y-direction

ZU = upper plume boundary (Z-coordinate)

ZL = lower plume boundary (Z-coordinate)

S = hydrodynamic average (bulk) dilution

C = average (bulk) concentration (includes reaction effects, if any)
                                    Z
                                                                                                                  ZL
                                   1.58
1.58
1.58
                                              180.3 0.555E-02
180.3 0.555E-02
184.6 0.542E-02
                                                                                                    1.58
3.26
       31.11
                       0.00
                                                                          0.00
                                                                                       0.00
                                                                                                                1.58
                                                                                                                0.00
        32.15
                                                                          3.36
                       0.00
                                                                                        4.34
                                                                                       9.69
                                                                                                                0.00
                       0.00
** WATER QUALITY STANDARD OR CCC HAS BEEN FOUND **

The pollutant concentration in the plume falls below water quality standard or CCC value of 0.470E-02 in the current prediction interval.
 This is the spatial extent of concentrations exceeding the water quality
    standard or CCC value.
34.23 0.00 1.
                                   1.58
                                              231.7 0.432E-02
273.7 0.365E-02
                                                                          4.27
                                                                                        9.70
                                                                                                                0.00
                                                                                                    3.72
       35.27
                                                                          4.44
                                   1.58
                                                                                       9.70
                                                                                                    3.81
                       0.00
                                                                                                                0.00
                                              289.1 0.346E-02
        36.31
                       0.00
                                   1,58
                                                                          4.50
                                                                                                    3.83
                                                                                                                0.00
                                                    525.1552 sec
 Cumulative travel time =
END OF MOD235: LAYER/BOUNDARY/TERMINAL LAYER APPROACH
                                                       ______
** End of NEAR-FIELD REGION (NFR) **
BEGIN MOD242: BUOYANT TERMINAL LAYER SPREADING
 Profile definitions:
    BV = top-hat thickness, measured vertically
BH = top-hat half-width, measured horizontally in y-direction
    ZU = upper plume boundary (Z-coordinate)
ZL = lower plume boundary (Z-coordinate)
S = hydrodynamic average (bulk) dilution
                                                         Page 3
```

wet_u050.prd 132.3 0.756E-02

1.20

6.20

19.00

0.00

X	Y	7		С	BV	вн	ZU	ZL
36.31	0.00	1 58	289 1	C 0.346E-02 0.249E-02 0.227E-02 0.215E-02 0.206E-02	4.50	9.71	3.83	0.00
52.59	0.00	1.58	401 9	0.310E 0E	1 68	36.17	2.42	0.74
		1.58	440.6	0.275_02	1 28	51 99	2.23	0.94
68.87	0.00	1 F0	465.0	0.22/6-02	1 00	64.64	2.13	1.04
85.15	0.00	1.58	405.9	0.2136-02	1.03	75 57	2.13	1.10
101.43	0.00	1.58	485.2	U.206E-02	0.97	/3.32	2.07	1.10
117.71	0.00	1.58	501.2	0.200E-02	0.89	85.22	2.03	1.14
133.99	0.00	1.58	514.9	0.194E-02	0.83	94.07	2.00	1.17
150.27	0.00	1.58	527.2	0.190E-02	0.78	102.25	1.97	1.19
166.55	0.00	1.58	538.5	0.190E-02 0.186E-02	0.74	109.90	1.95	1.21
182.83	0.00	1.58	549.0	0.182E-02 0.179E-02 0.176E-02	0.71	117,12	1.94	1.23
199.11	0.00	1.58	559.0	0.179E-02	0.68	123.96	1.93	1.24
199.11 215.38	0.00	$\bar{1.58}$	568.7	0.176E-02	0.66	130.49	1.91	1.26
231.66	0.00	1.58	578.0	0.173E-02 0.170E-02 0.168E-02	0.64	136.75	1.90	1.27
247.94	0.00	1.58	587 2	0 170F-02	0.62	142.78	1.90	1.27
264.22	0.00	1.58	596.3	0.168E-02	0.61	148 59	1.89	1.28
204.22	0.00	1.58	605 2	0.1656-02	0.59	148.59 154.22	1.88	1.29
280.50	0.00	1.58	614 2	0.165E-02 0.163E-02	0.58	159.69	1.88	1.29
296.78	0.00	1.20	014.2	0.1036-02	0.57	165.00	1.87	1.30
313.06	0.00	1.58	623.2	0.160E-02	0.57	170 10	1.07	1.30
329.34	0.00	1.58	632.2	0.158E-02	0.56	170.18	1.87	1.30
345.62	0.00	1.58	641.2	0.156E-02	0.55	175.25	1.86	1.31
361.90	0.00	1.58	650.4	0.154E-02	0.55	180.20	1.86	1.31
378.18	0.00	1.58	659.6	0.152E-02	0.54	185.05	1.85	1.32
394.46	0.00	1.58	669.0	0.149E-02	0.53	189.82	1.85	1.32
410.74	0.00	1.58	678.4	0.147E-02	0.53	194.50	1.85	1.32
427.02	0.00	1.58	688.0	0.145E-02	0.52	199,10	1.85	1.32
443.29	0.00	1.58	697.7	0.143E-02	0.52	203.64	1.84	1.33
459.57	0.00	1.58	707.5	0.141E-02	0.51	208.11	1.84	1.33 1.33
475.85	0.00	1.58	717.5	0.139E-02	0.51	212.53	1.84	1.33
492.13	0.00	1.58	727.6	0.137E-02	0.51	216.89	1.84	1.33
508.41	0.00	1.58	737.9	0.136E-02	0.50	221.20	1.84	1.33
524.69	0.00	1.58	748.3	0.134E-02	0.50	225.46	1.84	1.33
540.97	0.00	1.58	758.8	0.132E-02	0.50	229.69	1.83	1.33
557.25	0.00	1.58	769.5	0.130E-02	0.50	233.87	1.83	1.34
573.53	0.00	1.58	780 3	0.128E-02	0.50	238.02		
589.81	0.00	1.58	700.3	0.126E-02	0.49	242.14	1.83	1.34
606.09	0.00	1.58	131.2	0.125E-02	0.49	246.22	1.83	1.34
622.22	0.00	1.58	012.5	0.123E-02	0.49	250.28	1.83	1.34
622.37	0.00	1.58			0.49	254.31	1.83	1.34
638.65		1.58	926 3	0.121E-02 0.120E-02	0.49	258.31	1.83	1.34 1.34 1.34 1.34 1.34
654.92	0.00	1.58	030.3	0.1205-02	0.49	262.29	1.83	1 24
671.20	0.00	1.20	047.9	0.118E-02	0.49	266.26	1.83	1.34 1.34
687.48	0.00	1.58	039.0	0.116E-02			1.83	1.34
703.76	0.00	1.58	8/1.2	0.115E-02	0.49	270.20	1.03	1.34
720.04	0.00	1.58		0.113E-02	0.49	274.12	1.83	1.34
736.32	0.00	1.58	895.6	0.112E-02	0.49	278.03	1.83	1.34
752.60	0.00	1.58	907.8	0.110E-02	0.49	281.92	1.83	1.34
768.88	0.00	1.58		0.109E-02	0.49	285.80	1.83	1.34
785.16	0.00	1.58		0.107E-02	0.49	289.66	1.83	1.34
801.44	0.00	1.58	945.1	0.106E-02	0.49	293.51	1.83	1.34
817.72	0.00	1.58	957.8	0.104E-02	0.49 0.49 0.49 0.49	297.35	1.83	1.34
834.00	0.00	1.58	970.6	0.103E-02	0.49	301.18	1.83	1.34
850.28	0.00	1.58	983.4	0.102E-02	0.49	305.00	1.83	1.34
Cumulative	travel 1	time =	1990	0.103E-02 0.102E-02 0.102E-02 05.2246 sec				
_								

wet_u050.prd
C = average (bulk) concentration (includes reaction effects, if any)

Plume Stage 1 (not bank attached):

Plume is ATTACHED to LEFT bank/shore.
Plume width is now determined from LEFT bank/shore.

Plume Stage	2 (bank	attache	d):					
Х	Y	Z	S	C	BV	вн	ZU	ZL
850.28	305.00	1.58	983.4	0.102E-02	0.49	610.01	1.83	1.34
873.27	305.00	1.58	998.9	0.100E-02	0.49	614.41	1.83	1.34
896.26	305.00	1.58	1014.3	0.986E-03	0.50	618.85	1.83	1.34
919.26	305.00	1.58	1029.7	0.971E-03	0.50	623.33	1.83	1.33
942.25	305.00	1.58	1044.9	0.957E-03	0.50	627.85	1.84	1.33

```
wet_u050.prd
1060.1 0.943E-03
1075.2 0.930E-03
1090.3 0.917E-03
     965.25
                                                                                                                      1.84
                      305.00
                                        1.58
                                                                                      0.51
                                                                                                   632.39
                                                                                                                                    1.33
                                        1.58
1.58
                                                                                      0.51
0.51
     988.24
                      305.00
                                                                                                   636.97
                                                                                                                      1.84
                                                                                                                                     1.33
                                                                                                   641.58
                                                                                                                      1.84
    1011.24
                      305.00
                                                                                                                                    1.33
   1034.23
1057.23
1080.22
1103.22
                                                   1105.3 0.905E-03
1120.2 0.893E-03
1135.1 0.881E-03
                                        1.58
1.58
1.58
                                                                                      0.52
0.52
0.52
                                                                                                                      1.84
                      305.00
                                                                                                   646.22
                                                                                                                                     1.33
                      305.00
305.00
                                                                                                   650.89
655.59
                                                                                                                      1.84
                                                                                                                                     1.32
                                                                                                                      1.85
                                                                                                                                     1.32
                                                 1150.0 0.870E-03
1164.9 0.858E-03
1179.7 0.848E-03
1194.5 0.837E-03
1209.3 0.827E-03
1224.1 0.817E-03
1238.8 0.807E-03
1253.5 0.798E-03
1268.3 0.788E-03
1297.7 0.771E-03
1312.4 0.762E-03
1327.1 0.754E-03
1341.8 0.745E-03
1341.8 0.745E-03
1371.2 0.729E-03
1371.2 0.729E-03
1444.9 0.692E-03
1444.9 0.692E-03
1444.9 0.692E-03
1459.7 0.685E-03
1474.4 0.678E-03
1474.4 0.678E-03
1518.8 0.658E-03
1578.2 0.634E-03
                                                                                      0.53
0.53
0.53
                                        1.58
1.58
1.58
                      305.00
                                                                                                   660.31
                                                                                                                      1.85
                                                                                                   665.05
669.82
                      305.00
305.00
                                                                                                                      1.85
                                                                                                                                     1.32
   1126.21
   1149.20
                                                                                                                      1.85
                                                                                                                                    1.32
   1172.20
                                        1.58
1.58
                      305.00
                                                                                      0.54
                                                                                                   674.62
                                                                                                                      1.85
                                                                                                                                     1.32
   1195.19
                                                                                      0.54
                                                                                                   679.43
684.27
                                                                                                                      1.85
                                                                                                                                    1.32
                      305.00
                                        1.58
1.58
    1218.19
                      305.00
                                                                                      0.54
                                                                                                                      1.86
                                                                                                                                     1.31
                      305.00
                                                                                                                     1.86
   1241.18
                                                                                      0.54
                                                                                                   689.13
                                                                                                                                    1.31
                      305.00
305.00
305.00
                                                                                     0.55
0.55
0.55
                                                                                                   694.00
698.90
                                        1.58
1.58
1.58
                                                                                                                     1.86
   1264.18
                                                                                                                                    1.31
   1287.17
                                                                                                                     1.86
                                                                                                                                     1.31
   1310.17
                                                                                                   703.81
                                                                                                                     1.86
                                                                                                                                    1.31
                                        1.58
1.58
1.58
                      305.00
                                                                                      0.55
                                                                                                   708.75
                                                                                                                      1.86
   1333.16
                                                                                                                                    1.31
                                                                                                  713.70
718.66
723.64
                      305.00
305.00
                                                                                      0.56
0.56
   1356.15
                                                                                                                      1.86
                                                                                                                                     1.31
   1379.15
                                                                                                                     1.86
                                                                                                                                    1.31
                                                                                      0.56
0.56
0.57
0.57
                                       1.58
1.58
1.58
    1402.14
                      305.00
                                                                                                                     1.86
                                                                                                                                    1.30
                      305.00
305.00
305.00
                                                                                                   728.64
733.66
   1425.14
                                                                                                                      1.87
                                                                                                                                    1.30
   1448.13
                                                                                                                     1.87
                                                                                                                                    1.30
                                                                                                   738.68
   1471.13
                                        1.58
                                                                                                                     1.87
                                                                                                                                    1.30
   1494.12
                      305.00
                                        1.58
                                                                                      0.57
                                                                                                   743.72
                                                                                                                      1.87
                                                                                                                                    1.30
                                       1.58
1.58
1.58
1.58
1.58
                                                                                      0.57
0.57
                                                                                                   748.78
                                                                                                                      1.87
    1517.12
                      305.00
                                                                                                                                     1.30
                                                                                                                                    1.30
   1540.11
                      305.00
                                                                                                   753.85
                                                                                                                     1.87
                                                                                                                     1.87
                                                                                      0.58
   1563.11
1586.10
                      305.00
                                                                                                   758.93
                                                                                                                                    1.30
                                                                                      0.58
                                                                                                   764.02
                                                                                                                      1.87
                      305.00
                                                                                                                                     1.30
                                                                                                   769.12
774.24
   1609.09
                      305.00
                                                                                                                      1.87
                                                                                                                                    1.29
   1632.09
1655.08
1678.08
                                                                                                                     1.88
                                                                                     0.58
                                                                                                                                    1.29
                      305.00
                                        1.58
                      305.00
305.00
                                        1.58
1.58
                                                                                   0.58
0.59
                                                                                                   779.37
                                                                                                                      1.88
                                                                                                                                    1.29
                                                                                                   784.51
                                                                                                                                    1.29
                                                                                                                      1.88
                                       1.58
1.58
1.58
                                                                                                   789.66
                                                                                      0.59
                                                                                                                     1.88
                                                                                                                                    1.29
    1701.07
                      305.00
                      305.00
305.00
                                                                                      0.59
                                                                                                   794.81
799.98
   1724.07
1747.06
                                                                                                                      1.88
                                                                                                                                    1.29
                                                                                                                      1.88
                                                                                                                                    1.29
                                                                                                   805.16
810.35
815.55
                                                                                      0.59
                                                                                                                                    1.29
   1770.06
                      305.00
                                        1.58
                                                                                                                     1.88
                                       1.58
1.58
1.58
1.58
1.58
1.58
                                                                                                                     1.88
1.88
   1793.05
                      305.00
                                                                                                                                    1.29
                      305.00
305.00
                                                                                      0.60
                                                                                                                                    1.29
   1816.04
   1839.04
                                                                                      0.60
                                                                                                   820.75
                                                                                                                     1.88
                                                                                                                                    1.29
                      305.00
305.00
                                                                                                   825.97
831.19
                                                                                                                     1.88
                                                                                                                                    1.28
   1862.03
                                                                                      0.60
    1885.03
                                                                                                                      1.89
                                                                                      0.60
   1908.02
                                                                                                                      1.89
                                                                                                                                    1.28
                      305.00
                                                                                                   836.42
                                                                                      0.60
                                                                                                                     1.89
                                                                                                   841.66
                                                                                                                                    1.28
    1931.02
                      305.00
                                        1.58
                                                                                      0.60
                                        1.58
1.58
   1954.01
                      305.00
                                                                                      0.61
                                                                                                   846.90
                                                                                                                      1.89
                                                                                                                                    1.28
   1977.01
                                                 1713.0 0.584E-03
1728.1 0.579E-03
                                                                                                   852.16
                                                                                                                     1.89
                                                                                                                                    1.28
                      305.00
                                                                                      0.61
                                                                                                                     1.89
    2000.00
                      305.00
                                        1.58
                                                                                      0.61
                                                                                                   857.42
                                                                                                                                    1.28
                                                         47279.6055 sec
Cumulative travel time =
```

Simulation limit based on maximum specified distance = 2000.00 m. This is the REGION OF INTEREST limitation.

END OF MOD242: BUOYANT TERMINAL LAYER SPREADING

wet_u090.prd

```
CORMIX2 PREDICTION FILE:
```

CORMIX MIXING ZONE EXPERT SYSTEM
Subsystem CORMIX2: Multiport Diffuser Discharges
CORMIX Version 5.0GT

HYDRO2 Version 5.0.1.0 December 2007

```
CASE DESCRIPTION
  Site name/label:
  Design case:
                                          C:\...5928\cormix\Area10b\8port_lower_flow\wet_u090.prd
  FILE NAME:
  Time stamp:
                                         Thu Oct 20 10:33:02 2016
ENVIRONMENT PARAMETERS (metric units)
  Unbounded section
                             4.50
                                                                     0.019 \text{ USTAR} = 0.3705E-02
  UA
                             0.076 F
                             2.000 UWSTAR=0.2198E-02
              _
  Density stratified environment
  STRCND= A
                                         RHOAM = 1017.3500
  RHOAS = 1017.0000
                                         RHOAB = 1017.7000
                                                                               RHOAH0= 1017.7000 E
                                                                                                                                      =0.1499E-02
DIFFUSER DISCHARGE PARAMETERS (metric units)
                                         DITYPE= alternating_perpendicular
  Diffuser type:
                                                                305.00 YB1
  BANK = LEFT
                                         DISTB =
                                                                                           =
                                                                                                        300.00
                                                                                                                         YB2
                                                                                                                                                310.00
                           10.00
                                                                                             =
  LD
                                         NOPEN =
                                                                8
                                                                                 SPAC
                                                                                                            1.43
                                                                    0.002 HO
                            0.045 AO
                                                   =
                                                                                                             0.00
                                                                                                                         SUB0
                                                                                                                                                     4.50
  Nozzle/port arrangement: alternating_without_fanning
                                                                    0.00 \text{ SIGMA} = 0.013 = 0.013
                           90.00
                                                                                                                                                   90.00
                                         THETA =
                                                                                                                         BETA
                             0.998 Q0
                                                                                             =0.1270E-01
                                                     =
  RHOO = 1000.0000 DRHOO = 0.1770E + 02 GPO
                                                                                              =0.1706E+00
             =0.1000E+01 CUNITS= mg/l
= 1 KS =0.0000E+00 KD
                                                                                              =0.0000E+00
  IPOLL =
FLUX VARIABLES - PER UNIT DIFFUSER LENGTH (metric units)
              =0.1270E-02 m0
                                                     =0.1268E-02 j0
                                                                                                                         SIGNJO=
                                                                                                                                                     1.0
                                                                                             =0.2166E-03
  Associated 2-d length scales (meters)
                             0.001 lm
0.95 lbp
  1Q=B =
                                                                     0.35
                                                                                 ٦m
                                                     =
                                                                                                             0.22
  lmp
                                                                     1.55
                                                                                                             1.96
FLUX VARIABLES - ENTIRE DIFFUSER (metric units)
  Q0 = 0.1270E-01 M0 = 0.1268E-01
                                                                                             =0.2166E-02
  Associated 3-d length scales (meters)
                                                                                                                                                     4.93
                             0.04
                                        LM
                                                                     0.81
                                                                                                             1.48
                                                                                                                         Lb
                                                      =
                                                                                 Lmp
                                                                                                             1.71
                                                                                                                         Lbp
                                                                                                                                                     2.47
NON-DIMENSIONAL PARAMETERS
  FR0
                           67.76 FRD0
                                                                   11.39 R
                                                                                                          13.13 PL
                                                                                                                                                   68.
  (slot)
                                          (port/nozzle)
RECOMPUTED SOURCE CONDITIONS FOR ALTERNATING JETS OR RISER GROUPS:
  Momentum fluxes:
                                       mΟ
                                                 =0.8181E-04 MO
                                                                                             =0.8181E-03
  1Q=B =
                             0.020 1M
                                                                     0.02
                                                                                                                                                    0.38
                                                                                                             0.01
                                                      =
                                                                                 7 m
                                                                                             =
                                                                                                                                                    0.86
                             0.029 LM
  LO
                                                   =
                                                                     0.10 Lm
                                                                                             _
                                                                                                             0.38
                                                                                                                         Lmp
  Properties of riser group with 1 ports/nozzles each: 0.064 \ DO = 0.177 \ AO = 0.064 \ DO = 0.177 \ AO = 0.064 \ DO = 0.
                             0.064 D0 =
1.11 FRD0 =
                                                                                                             0.025 THETA =
  FR0
                                                                     0.37 R
                                                                                                             0.85
  (slot)
                                          (riser group)
FLOW CLASSIFICATION
  Flow class (CORMIX2) = MS5
Applicable layer depth HS = 4.
   MIXING ZONE / TOXIC DILUTION / REGION OF INTEREST PARAMETERS
              =0.1000E+01 CUNITS= mg/l
```

```
wet_u090.prd
 NTOX =
 NSTD =
                          CSTD = 0.4700E - 02
 REGMZ =
              2000.00 \text{ XMAX} =
                                       2000.00
 XTNT
X-Y-Z COORDINATE SYSTEM:
     ORIGIN is located at the bottom and the diffuser mid-point:
305.00 m from the LEFT bank/shore.

X-axis points downstream, Y-axis points to left, Z-axis points upward.

NSTEP = 50 display intervals per module
BEGIN MOD101: DISCHARGE MODULE (SINGLE PORT AT DIFFUSER CENTER)
                                                               BV
                               Ζ
                              0.00
        0.00
                    0.00
                                          1.0 0.100E+01
                                                               0.09
END OF MOD101: DISCHARGE MODULE (SINGLE PORT AT DIFFUSER CENTER)
BEGIN CORJET (MOD110): JET/PLUME NEAR-FIELD MIXING REGION
 Plume-like motion in linear stratification with strong crossflow.
 Zone of flow establishment:
                                                                    63.95
                                                    THETAE=
                                                                            SIGMAE=
                                                                                               0.00
                   0.00 XE
                                             0.00 YE
                                                                      0.00
                                                                             ZF
  LE
                                                                                              0.00
          =
 Profile definitions:
   BV = Gaussian 1/e (37%) half-width, in vertical plane normal to trajectory
BH = before merging: Gaussian 1/e (37%) half-width in horizontal plane
normal to trajectory
       after merging: top-hat half-width in horizontal plane parallel to diffuser line = hydrodynamic centerline dilution
       = centerline concentration (includes reaction effects, if any)
                                                                ΒV
                                                                            BH
  Individual jet/plumes before merging:
                                         1.1 0.931E+00
4.5 0.221E+00
9.7 0.103E+00
                   0.00
                              0.00
        0.00
                                                               0.09
                                                                           0.09
                   0.00
                              0.20
        1.17
                                                               0.12
                                                                           0.12
        2.34
                   0.00
                              0.33
                                                               0.18
                                                                           0.18
                   0.00
                                         15.3 0.654E-01
21.0 0.476E-01
        3.52
                              0.43
                                                               0.23
                                                                           0.23
        4.71
                   0.00
                              0.49
        5.89
                              0.55
                                         26.8 0.374E-01
                                                               0.32
                   0.00
                                                                           0.32
        7.07
                   0.00
                              0.59
                                         32.5 0.308E-01
                                                               0.35
                                                                           0.35
                                         38.1 0.262E-01
43.7 0.229E-01
        8.26
                   0.00
                              0.63
                                                               0.38
                                                                           0.38
                              0.66
                                                               0.41
        9.44
                   0.00
                                                                           0.41
                   0.00
      10.63
                              0.69
                                         49.3 0.203E-01
                                                               0.44
                                                                           0.44
                                         54.9 0.182E-01
60.6 0.165E-01
      11.81
                   0.00
                              0.72
                                                               0.47
                                                                           0.47
      12.99
                   0.00
                              0.74
                                                               0.49
      14.18
                   0.00
                              0.77
                                         66.3 0.151E-01
                                                               0.52
                                                                           0.52
                                        72.0 0.139E-01
77.8 0.129E-01
      15.36
                   0.00
                              0.80
                                                               0.54
                                                                           0.54
      16.55
                   0.00
                              0.82
                                                               0.56
                                                                           0.56
      17.73
                   0.00
                              0.84
                                         83.6 0.120E-01
                                                               0.59
                                                                           0.59
                                        89.4 0.112E-01
95.2 0.105E-01
      18.92
                   0.00
                              0.87
                                                               0.61
                                                                           0.61
      20.10
                   0.00
                              0.89
                                                               0.63
                                       101.0 0.990E-02
      21.29
                              0.91
                                                               0.65
                   0.00
                                                                           0.65
                                       106.8 0.937E-02
112.6 0.888E-02
      22.47
                              0.94
                   0.00
                                                               0.67
                                                                           0.67
      23.66
                   0.00
                              0.96
                                                               0.69
                                                                           0.69
                                       118.3 0.845E-02
      24.84
                   0.00
                              0.98
                                                               0.71
                                                                           0.71
  Merging of individual jet/plumes to form plane jet/plume: 25.41 0.00 0.99 145.6 0.687E-02 0.90 5. 27.21 0.00 1.01 150.9 0.663E-02 0.93 5.
                                                                           5.93
      28.40
                                       154.4 0.648E-02
157.8 0.634E-02
                                                                           5.95
                                                               0.95
                   0.00
                              1.03
      29.58
                              1.05
                                                               0.97
                                                                           5.97
                   0.00
                                       161.2 0.620E-02
164.5 0.608E-02
167.7 0.596E-02
      30.77
                                                               1.00
                   0.00
                              1.06
                                                                           6.00
      31.95
                   0.00
                              1.08
                                                               1.02
                                                                           6.02
```

1.04

Page 2

6.04

33.14

0.00

1.09

E

G

6

(2

```
wet_u090.prd
170.9 0.585E-02
                         0.00
                                      1.11
        34.32
                                                                                 1.06
                                                                                                6.06
        35.51
                         0.00
                                      1.12
                                                  174.0 0.575E-02
                                                                                 1.08
                                                                                                6.08
                                                  177.1 0.565E-02
        36.69
                         0.00
                                      1.13
                                                                                1.10
                                                                                                6.10
                                                  177.1 0.565E-02

180.1 0.555E-02

183.1 0.546E-02

185.9 0.538E-02

188.7 0.530E-02

191.5 0.522E-02

194.2 0.515E-02

196.8 0.508E-02

199.3 0.502E-02

201.8 0.496E-02
        37.88
                         0.00
                                       1.15
                                                                                 1.12
                                                                                                6.12
        39.06
                         0.00
                                       1.16
                                                                                 1.14
                                                                                                6.14
        40.25
                         0.00
                                       1.17
                                                                                 1.16
                                                                                                6.16
        41.43
                         0.00
                                       1.19
                                                                                 1.18
                                                                                                6.20
                                                                                 1.20
        42.62
                                      1.20
                         0.00
                                       1.21
                                                                                 1.21
        43.80
                         0.00
                                                                                                6.21
                                      1.22
1.23
        44.99
                         0.00
                                                                                 1.23
                                                                                                6.23
        46.17
                         0.00
                                                                                 1.25
                                                 201.8 0.496E-02
204.2 0.490E-02
206.5 0.484E-02
208.8 0.479E-02
210.9 0.474E-02
        47.36
48.54
49.73
                                                                                1.26
                                                                                                6.26
                         0.00
                                      1.24
                                      1.24
1.25
1.26
                                                                                                6.28
                         0.00
                                                                                1.28
                         0.00
                                                                                 1.30
        50.92
                         0.00
                                                                                 1.31
                        0.00
        52.10
                                      1.27
** WATER QUALITY STANDARD OR CCC HAS BEEN FOUND **

The pollutant concentration in the plume falls below water quality standard or CCC value of 0.470E-02 in the current prediction interval.

This is the spatial extent of concentrations exceeding the water quality standard or CCC value.

53.28 0.00 1.27 213.0 0.469E-02 1.34 6.34
                                      1.27
1.28
1.28
                                                  213.0 0.469E-02
215.1 0.465E-02
217.0 0.461E-02
                                                                                                6.35
6.37
        54.47
                         0.00
                                                                                 1.35
                         0.00
                                                                                1.37
        55.66
                                               218.9 0.457E-02
220.7 0.453E-02
222.4 0.450E-02
        56.84
                         0.00
                                      1.28
                                                                                1.38
                                                                                                6.38
                                      1.29
1.29
        58.03
                         0.00
                                                                                1.39
                                                                                                6.39
                         0.00
        59.21
                                                                                1.40
   Terminal level in stratified ambient has been reached.
                                                         625.3839 sec
  Cumulative travel time =
END OF CORJET (MOD110): JET/PLUME NEAR-FIELD MIXING REGION
BEGIN MOD235: LAYER/BOUNDARY/TERMINAL LAYER APPROACH
   BH
                                                                                             6.40
 Profile definitions:
    BV = top-hat thickness, measured vertically
BH = top-hat half-width, measured horizontally in y-direction
ZU = upper plume boundary (Z-coordinate)
ZL = lower plume boundary (Z-coordinate)
S = hydrodynamic average (bulk) dilution
C = average (bulk) concentration (includes reaction effects, if any)
                                      Z
1.29
1.29
1.29
1.29
                                                  S C
222.4 0.450E-02
                                                                                  BV
                                                                                                 BH
                         0.00
                                                                                 0.00
        57.81
                                                                                                0.00
                                                                                                              1.29
                                                                                                                           1.29
        58.65
                                                  222.4 0.450E-02
                                                                                 2.78
                                                                                                3.49
                                                                                                              2.68
                                                                                                                           0.00
                         0.00
                                                  227.4 0.440E-02
281.9 0.355E-02
330.6 0.303E-02
348.3 0.287E-02
                                                                                               7.80
7.80
        59.49
                         0.00
                                                                                 3.26
                                                                                                              2.92
                                                                                                                           0.00
                                                                                 3.54
        60.33
                         0.00
                                                                                                              3.06
                                                                                                                           0.00
                                                                                 3.68
                         0.00
        61.18
                                                                                               7.81
                                                                                                              3.13
                                                                                                                           0.00
                                      1.29
        62.02
                         0.00
                                                                                                7.81
                                                                                                              3.15
 Cumulative travel time =
                                                         662.3197 sec
END OF MOD235: LAYER/BOUNDARY/TERMINAL LAYER APPROACH
** End of NEAR-FIELD REGION (NFR) **
BEGIN MOD242: BUOYANT TERMINAL LAYER SPREADING
  Profile definitions:
    BV = top-hat thickness, measured vertically
    BH = top-hat half-width, measured horizontally in y-direction ZU = upper plume boundary (Z-coordinate) ZL = lower plume boundary (Z-coordinate) S = hydrodynamic average (bulk) dilution
```

wet_u090.prd
C = average (bulk) concentration (includes reaction effects, if any)

Plume Stage	1 (not	bank att	ached):				
X 62.02 91.70 121.39 151.08 180.76 210.45 240.14 269.51 329.51 329.52 358.88 388.57 418.26 447.63 507.32 537.00 566.69 596.36 655.75 685.44 774.50 804.18 833.87 863.56 922.93 952.62 982.30 1011.99 1041.36 1101.05 1130.74 1160.42	Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Z 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29	\$ C 348.3 0.287E-02 486.9 0.205E-02 535.0 0.187E-02 567.8 0.176E-02 594.6 0.168E-02 618.5 0.162E-02 641.1 0.156E-02 685.6 0.146E-02 708.4 0.141E-02 731.8 0.137E-02 755.9 0.132E-02 780.9 0.128E-02 880.8 0.124E-02 833.5 0.120E-02 861.2 0.116E-02 889.6 0.112E-02 919.0 0.109E-02 949.1 0.105E-02 949.1 0.105E-02 949.1 0.105E-02 1011.8 0.988E-03 1044.2 0.958E-03 111.1 0.900E-03 1145.5 0.873E-03 1145.5 0.873E-03 1145.5 0.873E-03 1145.5 0.776E-03 126.2 0.822E-03 1252.4 0.798E-03 126.2 0.822E-03	1.080.4966319876555544444444555555566666777700.000.00000000000000000	BH 7.81 29.65 42.68 53.11 70.19 77.60 84.51 91.04 97.27 103.25 120.14.65 120.58 121.35	Z158 1.749 1.663 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.557 1	ZL 0.00 0.60 0.77 0.84 0.89 0.92 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.00 1.
833.87 863.56 893.24 922.93 952.62 982.30 1011.99 1041.68 1071.36	0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29	1216.2 0.822E-03 1252.4 0.798E-03 1289.2 0.776E-03 1326.5 0.754E-03 1364.3 0.733E-03 1402.7 0.713E-03 1441.5 0.694E-03 1480.8 0.675E-03 1520.6 0.658E-03	0.55 0.55 0.55 0.55 0.56 0.56 0.56 0.56	186.05 190.96 195.88 200.79 205.70 210.61 215.52 220.44 225.36 230.28	1.56 1.56 1.57 1.57 1.57 1.57 1.57 1.57	1.02 1.02 1.01 1.01 1.01 1.01 1.01 1.01
1160.42 1190.11 1219.80 1249.48 1279.17 1308.86 1338.54 1368.23 1397.92 1427.60	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29	1642.6 0.609E-03 1684.1 0.594E-03 1726.1 0.579E-03 1768.4 0.565E-03 1811.2 0.552E-03 1854.3 0.539E-03 1897.8 0.527E-03 1941.7 0.515E-03 1986.0 0.504E-03 2030.7 0.492E-03	0.57 0.58 0.58 0.58 0.58 0.59 0.59 0.59	240.15 245.09 250.04 255.00 259.97 264.94 269.92 274.90 279.90 284.90	1.57 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.59	1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99
1457.29 1486.98 1516.66 1546.35 Cumulative	0.00 0.00 0.00 0.00 travel t	1.29 1.29 1.29 1.29 time =	2075.7 0.482E-03 2121.0 0.471E-03 2166.7 0.462E-03 2212.8 0.452E-03 20193.0273 sec	0.60 0.60 0.60 0.61	289.91 294.93 299.96 305.00	1.59 1.59 1.59 1.59	0.99 0.99 0.99 0.99

Plume is ATTACHED to LEFT bank/shore. Plume width is now determined from LEFT bank/shore.

Plume Stage 2 (bank attached):

X
Y
Z
S
C
1546.35 305.00 1.29 2212.8 0.452E-03
1555.42 305.00 1.29 2225.2 0.449E-03
1564.50 305.00 1.29 2237.5 0.447E-03
1573.57 305.00 1.29 2249.8 0.444E-03
1582.64 305.00 1.29 2262.1 0.442E-03 BV ВН ΖU ZL 1.59 1.59 1.59 609.99 0.61 0.99 611.27 612.55 613.84 0.61 0.61 0.98 0.98 0.61 1.60 615.14 0.98 0.61 1.60

```
wet_u090.prd
2274.3 0.440E-03
                        305.00
                                                                                                 0.62
                                                                                                               616.44
                                                                                                                                    1.60
                                                                                                                                                     0.98
                                             1.29
    1591.72
                                            1.29
1.29
1.29
1.29
                                                       2286.5 0.437E-03
2298.7 0.435E-03
2310.8 0.433E-03
                                                                                                               617.74
                                                                                                                                                     0.98
                                                                                                 0.62
                                                                                                                                    1.60
    1600.79
                        305.00
                                                                                                0.62
0.62
0.62
                        305.00
305.00
                                                                                                               619.05
620.36
                                                                                                                                    1.60
                                                                                                                                                     0.98
    1609.86
                                                                                                                                                     0.98
                                                                                                                                    1.60
    1618.93
                                                        2310.6 0.433E-03
2322.8 0.431E-03
2334.9 0.426E-03
2358.8 0.424E-03
2370.8 0.422E-03
2370.8 0.422E-03
2382.7 0.420E-03
2496.6 0.418E-03
2418.2 0.414E-03
2418.2 0.414E-03
2418.2 0.414E-03
2453.5 0.408E-03
2465.2 0.406E-03
2476.9 0.404E-03
2476.9 0.404E-03
2476.9 0.404E-03
2511.9 0.398E-03
2535.0 0.394E-03
                                                                                                               621.67
623.00
624.32
                                                                                                                                                     0.98
    1628.01
                         305.00
                                                                                                                                    1.60
                                             1.29
1.29
                                                                                                0.63
                                                                                                                                    1.60
                                                                                                                                                     0.98
    1637.08
                        305.00
                        305.00
305.00
                                                                                                                                    1.60
                                                                                                                                                     0.98
    1646.15
                                             1.29
1.29
1.29
1.29
                                                                                                                625.65
    1655.23
                                                                                                 0.63
                                                                                                                                    1.60
                                                                                                                                                     0.97
    1664.30
                                                                                                               626.99
628.32
                                                                                                                                                     0.97
                                                                                                 0.63
                                                                                                                                    1.61
                         305.00
                        305.00
305.00
                                                                                                                                    1.61
                                                                                                                                                     0.97
    1673.37
                                                                                                 0.63
    1682.45
                                                                                                 0.64
                                                                                                                629.67
                                                                                                                                    1.61
                                                                                                                                                     0.97
                                             1.29
1.29
                         305.00
                                                                                                 0.64
                                                                                                                631.01
                                                                                                                                    1.61
                                                                                                                                                     0.97
    1691.52
                                                                                                               632.36
633.72
                                                                                                                                                     0.97
                        305.00
305.00
                                                                                                                                    1.61
    1700.59
                                                                                                 0.64
                                             1.29
1.29
1.29
1.29
    1709.66
                                                                                                 0.64
                                                                                                                                    1.61
                                                                                                                                                     0.97
                        305.00
305.00
305.00
    1718.74
1727.81
                                                                                                 0.64
                                                                                                                635.08
                                                                                                                                                     0.97
                                                                                                                                    1.61
                                                                                                 0.64
                                                                                                                                                     0.97
                                                                                                                636.44
                                                                                                                                    1.61
                                                                                                                637.80
                                                                                                                                                     0.97
    1736.88
                                                                                                                                    1.61
                                                                                                0.65
0.65
0.65
0.65
0.65
                                                                                                               639.17
640.55
   1745.96
1755.03
1764.10
                        305.00
305.00
305.00
                                             1.29
1.29
1.29
                                                                                                                                                     0.97
                                                                                                                                    1.61
                                                                                                                                    1.61
                                                                                                                                                     0.96
                                                                                                                641.93
                                                                                                                                    1.61
                                                                                                                                                     0.96
   1773.18
1782.25
1791.32
                                             1.29
                                                                                                                                                     0.96
                        305.00
                                                                                                                643.31
                                                                                                                                    1.62
                                             1.29
1.29
1.29
1.29
1.29
                        305.00
305.00
                                                                                                               644.69
646.08
                                                                                                                                    1.62
                                                                                                                                                     0.96
                                                                                                                                                     0.96
                                                                                                                                    1.62
                                                                                                               647.47
648.86
650.26
                        305.00
                                                                                                                                                     0.96
    1800.39
                                                                                                 0.66
                                                                                                                                    1.62
                        305.00
305.00
305.00
    1809.47
1818.54
                                                                                                                                                     0.96
                                                                                                 0.66
                                                                                                                                    1.62
                                                                                                                                                     0.96
                                                                                                                                    1.62
                                                                                                0.66
                                             1.29
1.29
1.29
1.29
1.29
1.29
    1827.61
                                                                                                0.66
                                                                                                                651.66
                                                                                                                                    1.62
                                                                                                                                                     0.96
                                                                                                               653.07
654.48
655.89
                                                                                                0.66
                                                                                                                                                     0.96
                                                                                                                                    1.62
    1836.69
                        305.00
                                                                                                                                                     0.96
                        305.00
305.00
305.00
                                                                                                                                    1.62
    1845.76
    1854.83
                                                                                                 0.67
                                                                                                                                    1.62
                                                                                                                                                     0.96
                                                                                                               657.30
658.72
                                                                                                 0.67
                                                                                                                                    1.62
                                                                                                                                                     0.96
    1863.91
                        305.00
305.00
305.00
                                                                                                                                    1.62
                                                                                                 0.67
                                                                                                                                                     0.95
    1872.98
                                                                                                               660.14
661.56
662.99
    1882.05
                                                                                                 0.67
                                                                                                                                    1.62
                                                                                                                                                     0.95
                                             1.29
1.29
1.29
                                                                                                 0.67
                                                                                                                                                     0.95
    1891.12
                                                                                                                                    1.63
    1900.20
1909.27
                                                                                                0.67
                                                                                                                                                     0.95
                                                                                                                                    1.63
                         305.00
                                                                                                               664.42
665.85
                        305.00
                                                                                                                                    1.63
                                                                                                                                                     0.95
                                             1.29
1.29
1.29
                                                                                                 0.68
                                                                                                                                                     0.95
    1918.34
                        305.00
                                                                                                                                    1.63
                                                                                                               667.29
668.73
670.17
                                                                                                                                                     0.95
    1927.42
1936.49
                        305.00
305.00
                                                                                                0.68
                                                                                                                                    1.63
                                                                                                                                                     0.95
                                                                                                                                    1.63
                                             1.29
1.29
1.29
                                                                                                                                                     0.95
                                                                                                                                    1.63
    1945.56
                         305.00
                                                                                                 0.68
                        305.00
305.00
                                                                                                 0.68
                                                                                                               671.61
673.06
    1954.64
                                                                                                                                    1.63
                                                                                                                                                     0.95
                                                                                                                                                     0.95
                                                                                                                                    1.63
    1963.71
                                            1.29
1.29
1.29
1.29
                                                      2763.1 0.362E-03
2774.4 0.360E-03
2785.6 0.359E-03
2796.9 0.358E-03
                                                                                                               674.51
675.96
677.42
                                                                                                                                                     0.95
    1972.78
                         305.00
                                                                                                 0.68
                                                                                                                                    1.63
                        305.00
305.00
    1981.85
                                                                                                 0.69
                                                                                                                                    1.63
                                                                                                                                                     0.95
                                                                                                 0.69
                                                                                                                                    1.63
                                                                                                                                                     0.95
    1990.93
                                                                                                                678.87
                                                                                                                                                     0.94
    2000.00
                         305.00
                                                                                                 0.69
                                                                                                                                    1.63
                                                               26162.0820 sec
Cumulative travel time =
```

Simulation limit based on maximum specified distance = 2000.00 m. This is the REGION OF INTEREST limitation.

END OF MOD242: BUOYANT TERMINAL LAYER SPREADING

Appendix 7.1

Legislation and Standards for Land Contamination Assessment

Legislation and Standards for Land Contomination Assessment

The relevant legislation, standards and guidelines applicable to the present study for the assessment of land contamination include:

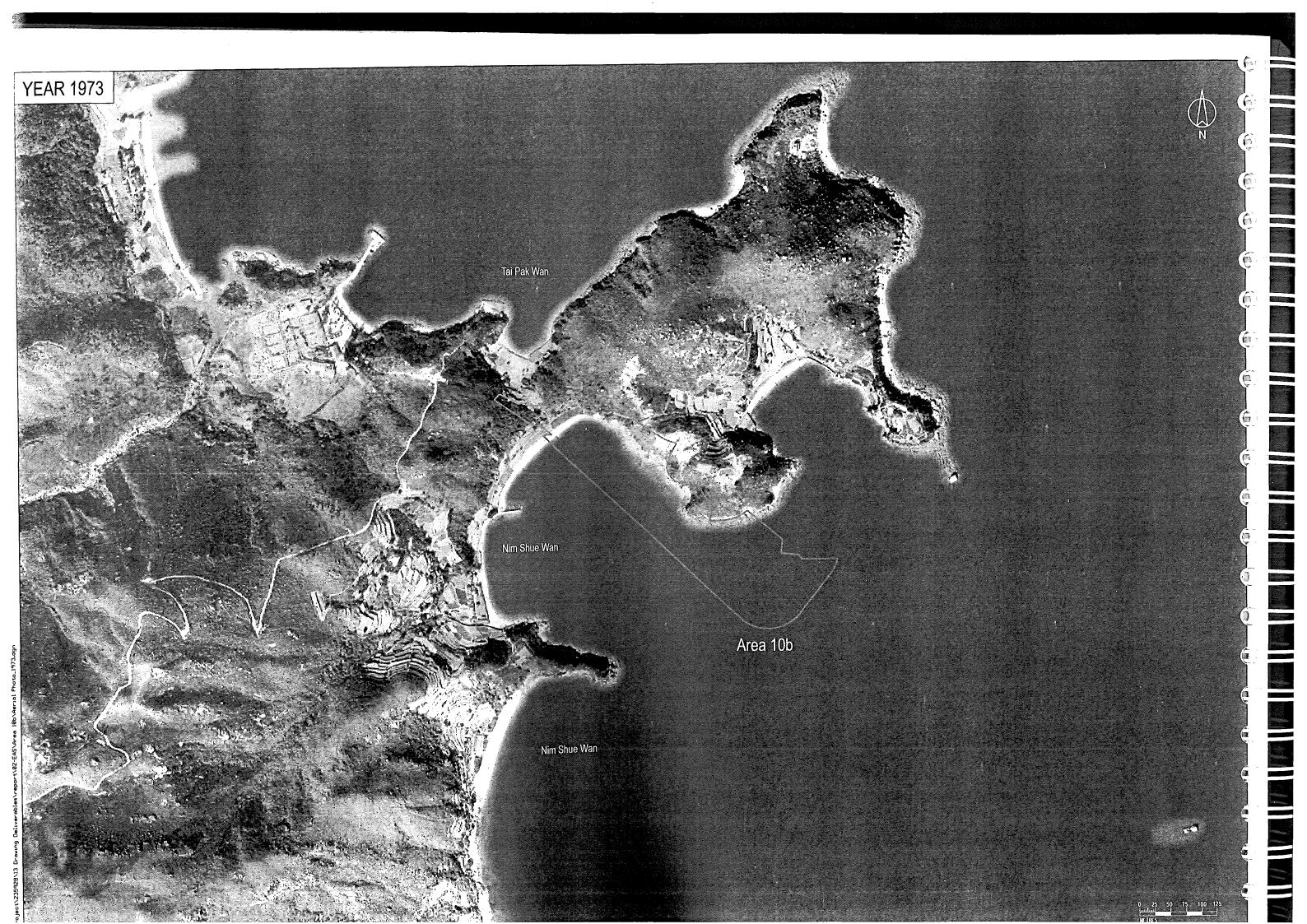
- Annex 19 of the Technical Memorandum on Environmental Impact
 Assessment Ordinance (TM-EIAO), Guidelines for Assessment of Impact
 Assessment Process (TM-EIA), Guidelines for Assessment of Impact On Sites
 of Cultural Heritage and Other Impacts (Section 3: Potential Contaminated
 Land Issues), Environmental Protection Department (EPD), 1997;
- Guidance Note for Contaminated Land Assessment and Remediation EPD 2007;
- Guidance Manual for Use of Risk-Based Remediation Goals (RBRGs) for Contaminated Land Management, EPD, 2007; and
- Practice Guide for Investigation and Remediation of Contaminated Land, EPD, 2011.

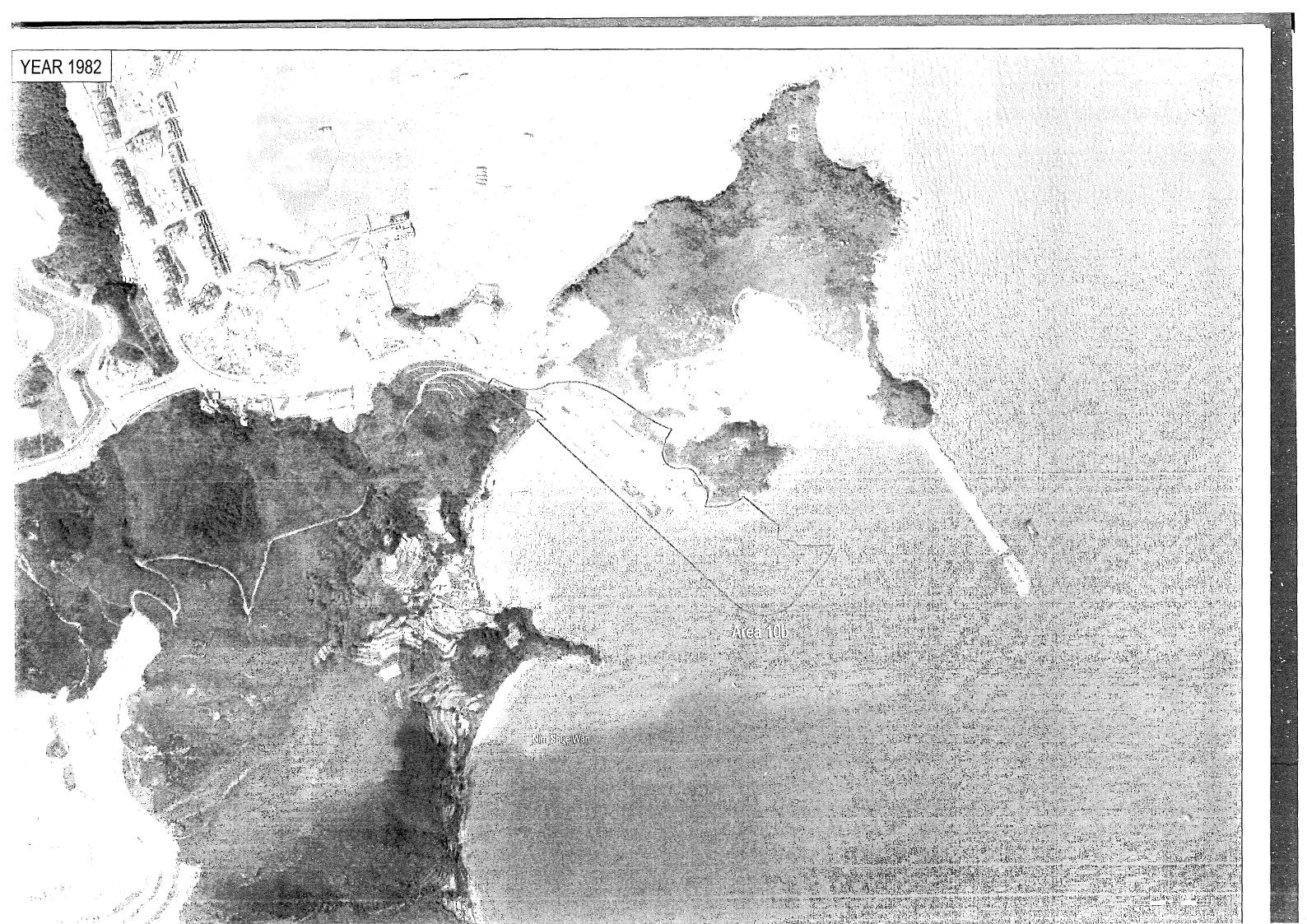
Under Annex 19 of the TM-EIAO, a number of potentially contaminating historical land uses should be considered, including oil installations, gas works, metal workshops, car repair and dismantling workshops, which have the potential to cause or have caused land contamination.

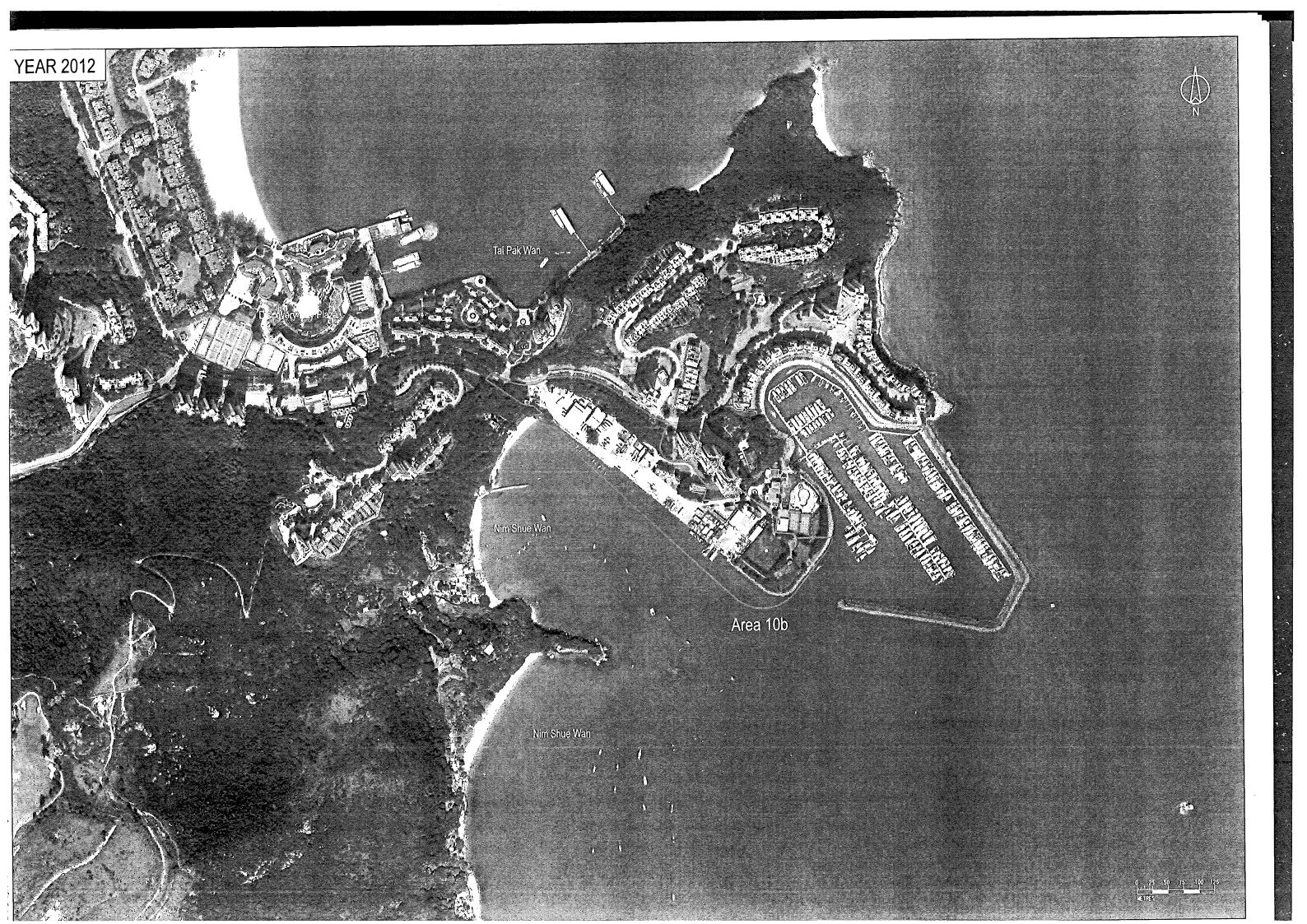
In accordance with EPD's Guidance Note for Contamination Land Assessment and Remediation, a contamination assessment evaluation should:

- provide a clear and detailed account of the present land-use and the relevant past land history, in relation to possible land contamination;
- identify areas of potential contamination and associated impacts, risks or hazards; and
- submit a plan to evaluate the actual contamination conditions for soil and/or groundwater, if required.

The Guidance Manual for Use of Risk-Based Remediation Goals (RBRGs) for Contaminated Land Management introduces the risk based approach in land contamination assessment and present instructions for comparison of soil and groundwater data to the Risk-Based Remediation Goals (RBRGs) for 54 chemicals of concern commonly found in Hong Kong. The RBRGs were derived to suit Hong Kong conditions by following the international practice of adopting a risk-based methodology for contaminated land assessment and remediation and were designed to protect the health of people who could potentially be exposed to land impacted by chemicals under

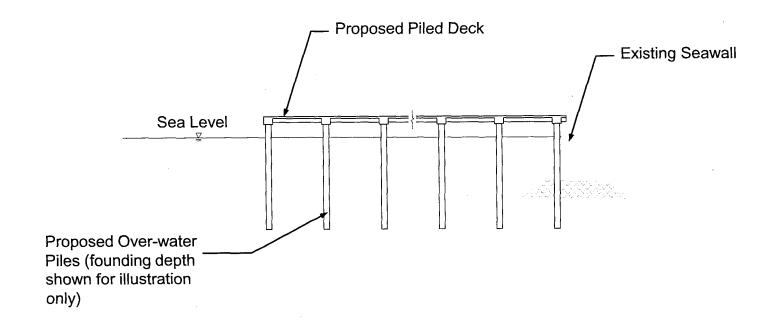

235928 | Final | November 2015 Page 1


four broad post restoration land use categories. The RBRGs also serve as the remediation targets if remediation is necessary.


The EPD's Practice Guide for Investigation and Remediation of Contaminated Land includes a summary of the general steps of a contamination assessment study, which include site appraisal, site investigation and remediation.

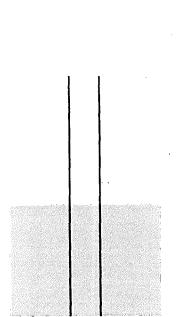
Appendix 7.2

Historical Aerial Photos for Discovery Bay

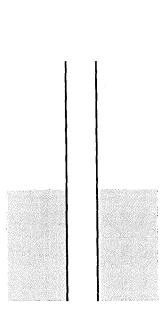


Annex F

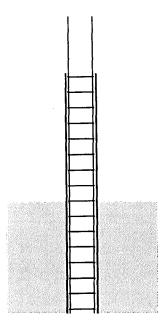
Typical Construction Method for Piling Works

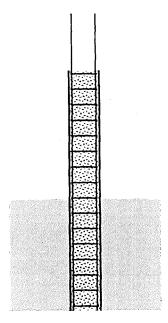

Locations of SPS

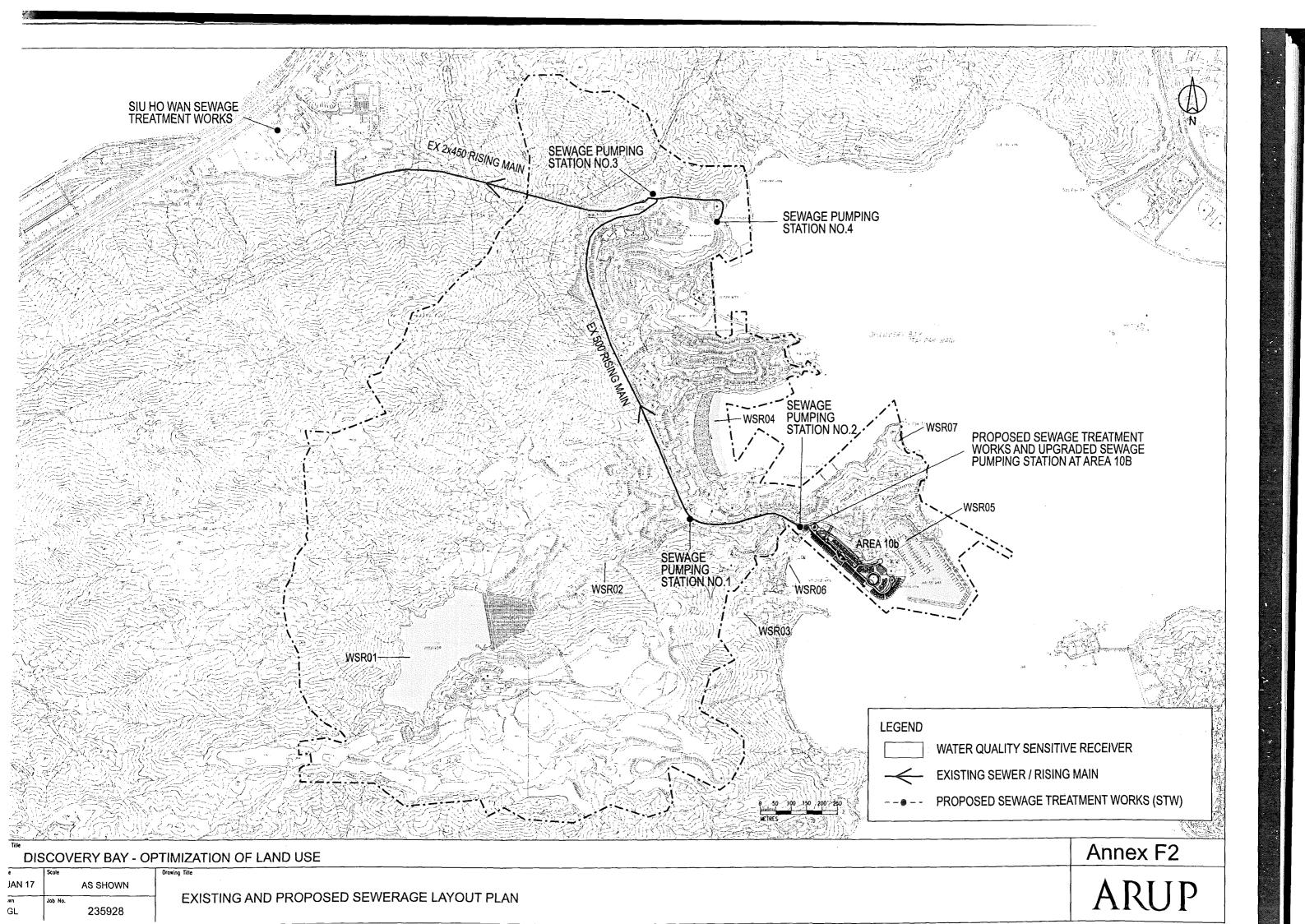
Justification of Sewage Treatment Level



ARUP


Typical Sequence of Marine Piling Works


Stage 1
Install steel casing into seabed


Stage 2
Remove soil/rock inside casing

Stage 3
Install permanent steel reinforcements

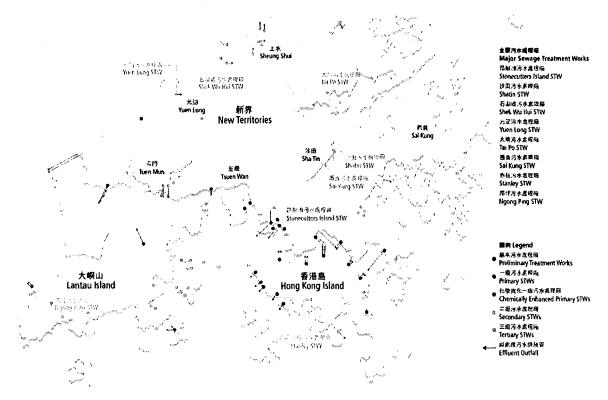
Stage 4
Pour concrete inside casing

<u>Discovery Bay - Area 10b: Justification for the Proposed Sewage Treatment Level</u>

Sewage Treatment Level of Planned and Existing Sewage Treatment Works on South Lantau

The proposed STW for Area 10b has a capacity of 1,100 m³/day and will adopt the MBR technology to treat the sewage generated by the planned population in Area 10b to appropriate level before discharge. **Table 1** compares the flow rates and discharge limits for the key pollutants from the proposed STW and the STW as adopted in Outlying Islands Sewerage Stage 2 – South Lantau Sewerage Works (South Lantau EIA) which also involves a new STW discharging into the water of South Lantau.

It can be seen from **Table 1** that the proposed STW has adopted the same treatment technology as the South Lantau STW (SLSTW). Although the flow rate for the proposed STW is much lower than that in the SLSTW, the concentration of *E. coli* has been purposefully reduced to 10 counts/100ml which is significantly lower than that of 1,000 counts/100ml in the SLSTW. In fact, the proposed discharge limit of 10 counts/100mL is even lower than the WQO and hence any risk of human contact has been proactively addressed. In terms of TIN, it can also be noted that the discharge from the proposed STW would reach a concentration of 20mg/L which is also lower than the 30 mg/L as adopted in the SLSTW. It can therefore be seen that the discharge limit in the proposed STW for Area 10b is by all aspects much better than that adopted in the SLSTW which is also discharging into the sea area off South Lantau.


Table 1 Comparison of Effluent Discharge Standards against South Lantau EIA

Parameters	Parameters Present Study (for Area 10b) South Lanta		
Treatment technology	MBR	MBR	
Flow Rate: m ³ /day	1,100	5,800	
NH3-N: mg/L	8	Not provided in EIA	
TIN: mg/L	20 30		
TP: mg/L	2 Not provided in EIA		
SS: mg/L	30 30		
E. coli: counts/100ml	1,000		

[1] Application No.: EIA-247/2016

Apart from the planned STW, the MBR technology is also comparable to the existing sewage treatment technology adopted on South Lantau and its surrounding outlying islands. The MBR technology is composed of activated sludge treatment and microfiltration/ultrafiltration which can be classified as secondary treatment level. As shown in **Figure 1**, the majority of the existing STWs on South Lantau and its surrounding outlying islands are implementing secondary treatment level. Therefore, the adopted MBR is also consistent with the existing sewage treatment technology in South Lantau.

Figure 1 Sewage Treatment Technology in Hong Kong

[1] DSD Sustainability Report 2015-16

Comparison of the change of TIN between the current study and South Lantau EIA

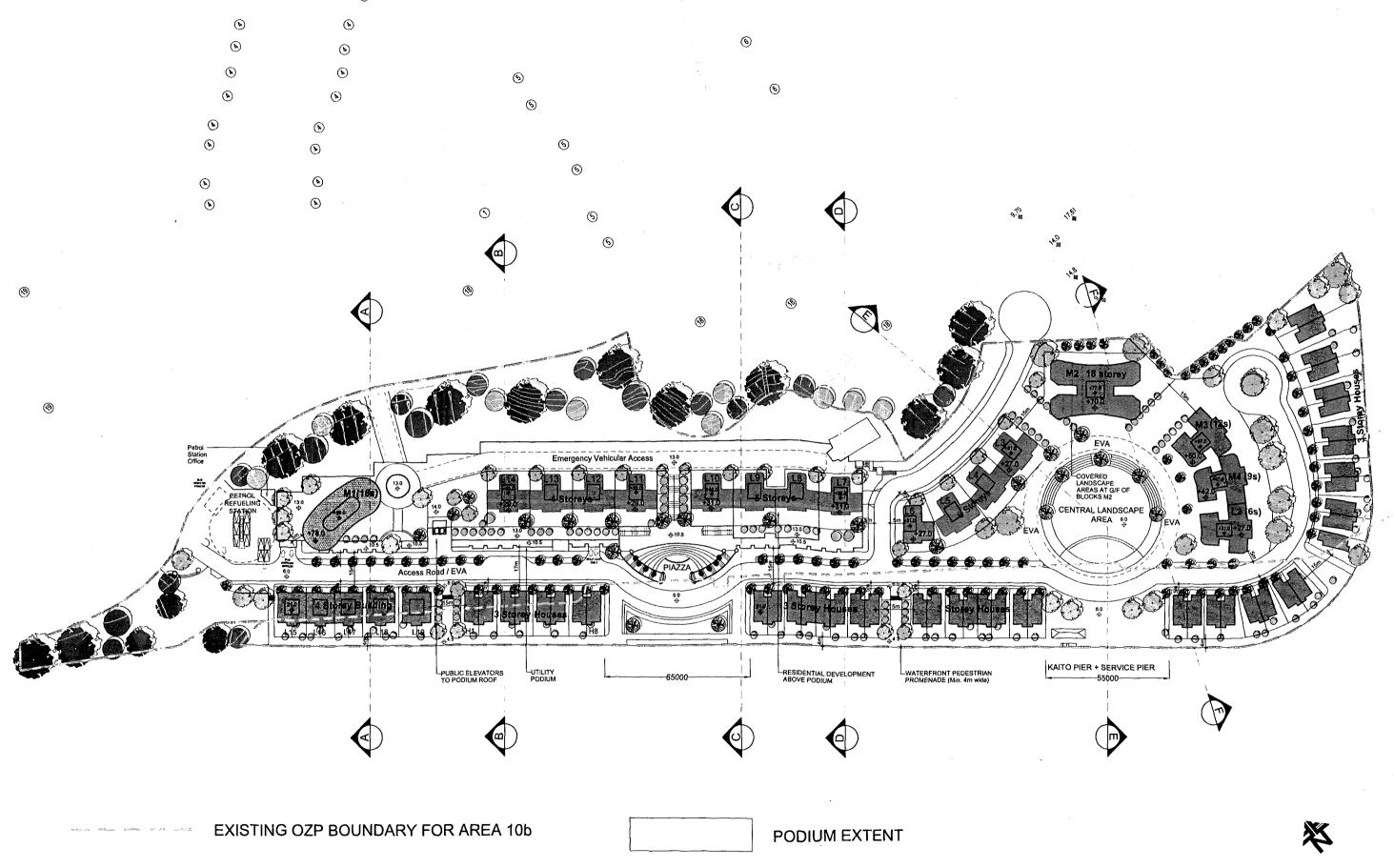
According to the preliminary water quality assessment presented in *Technical Note - Preliminary Water Quality Assessment of Area 10b*, the nearest WSR is the Hai Tei Wan Marina at approximately 320m from the discharge point. The predicted increase in TIN (in depth-averaged as per WQO) between the with and without the proposed STW scenarios is about 0.007 mg/L. Taking into account of the baseline condition of 0.35mg/L, the percentage of increase is only 2 %. Compared with the relevant WSRs considered in the South Lantau EIA in which the increase in depth-averaged TIN is up to 33% (e.g. Tong Fuk Beach SR11: 33% in dry season and 12.5% in wet season), the increase in depth-averaged TIN due to the project is not significant.

Besides, an analysis on the TIN concentration within the effluent plume in addition to the depth-averaged one is also carried out. Compared with the baseline TIN condition of 0.35 mg/L, the preliminary water quality assessment showed that the increase of TIN within the plume at the nearest WSR (Hai Tei Wan Marina) is up to 0.064 mg/L or 18.3% during wet season when the ambient flow is 0.013 m/s. This figure, compared with the aforementioned 33% increase in depth-averaged TIN from the South Lantau EIA is more or less in the same order.

Based on the analysis on the depth-averaged TIN and TIN within the effluent plume, it can thus be seen that the proposed treatment level of the proposed STW in terms of TIN has ensured that the elevation of TIN at WSRs is very low as compared to other approved EIA Report.

Table 2 Predicted depth-averaged TIN level in the worst case scenario

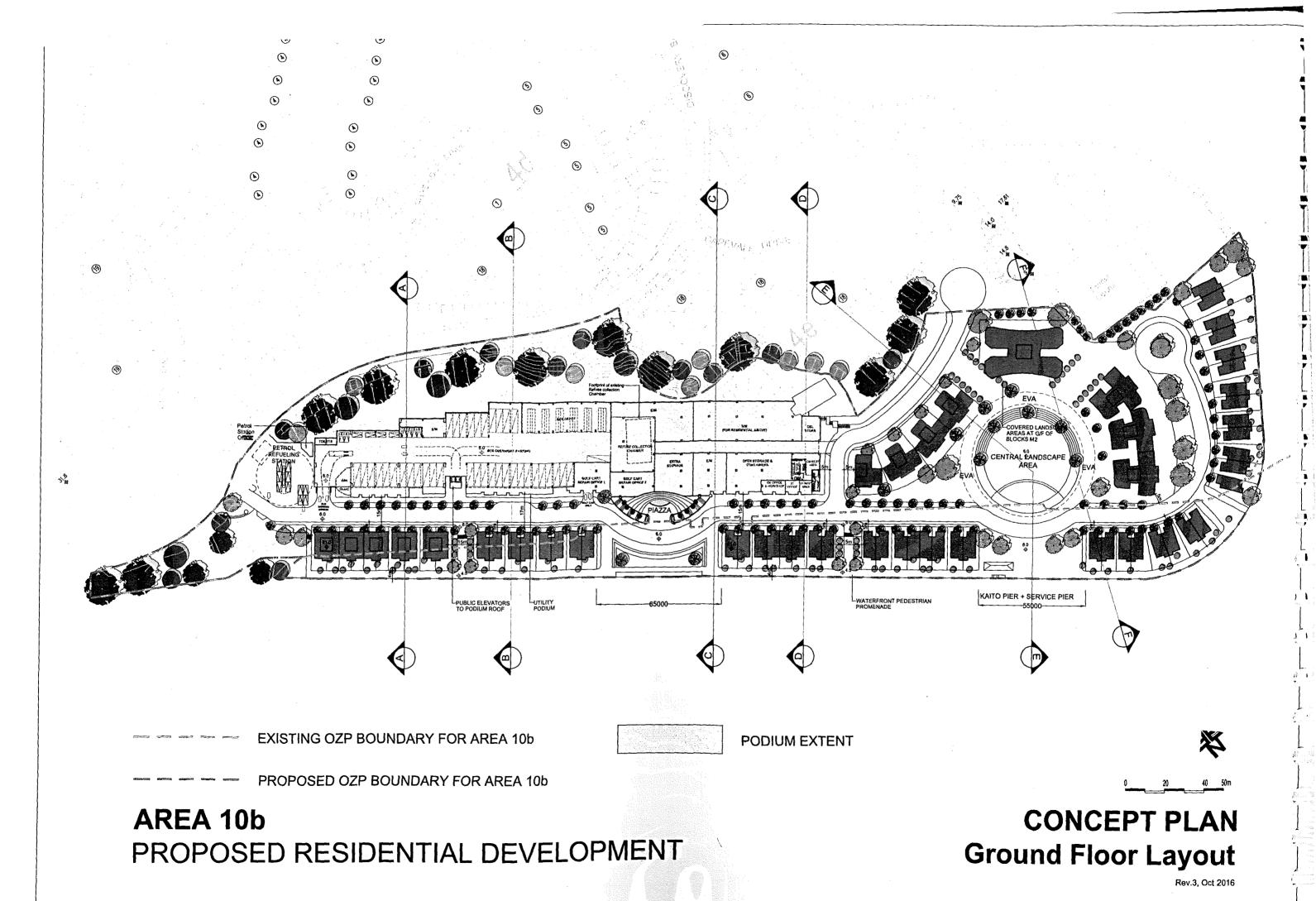
wen	TIN (mg/L)		
WSR	Without Project	With Project	% Increase
Hai Tei Wan Marina [1]	0.35	0.357	2

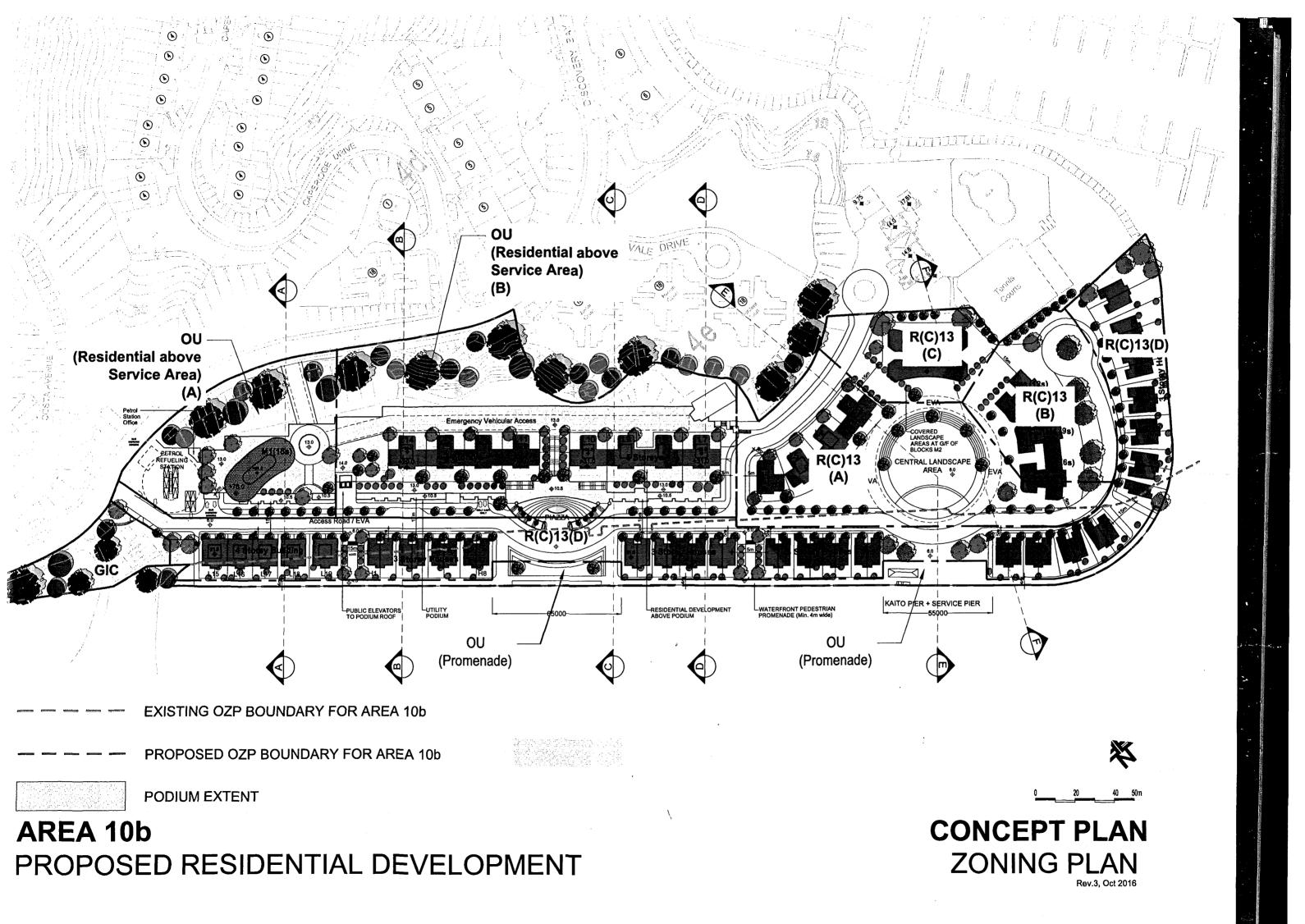

[1] Water Depth = approx. 4.5 m

Notwithstanding the above clarifications, the Project Proponent of Area 10b still commits to review the effectiveness of any suitable technology available at the time of detailed design that could deliver discharge limits that are as good as or even better than that proposed now.

In addition, the flow in the CORMIX is assumed to be always in the same direction towards the WSR. In reality, the flow direction will change during ebb and flood tides. So the effluent plume will have half of the time to flow in one direction reaching the WSR, and the other half of the time to flow in the other direction away from the WSR. So indeed the TIN concentration at the WSR would be further reduced. Results from the Technical Note - Preliminary Water Quality Assessment of Area 10b is hence based on a conservative side.

Notwithstanding the above clarifications, the Project Proponent of Area 10b still commits to review the effectiveness of any suitable technology available at the time of detailed design that could deliver discharge limits that are as good as that proposed now. In particular, it is noted that some of the existing STWs beyond South Lantau can achieve an even lower total nitrogen concentration, say 10 mg/L in Peng Chau STW. The possibility to reduce the total nitrogen level to similar level will be further explored during the detailed design stage.


Annex G
Revised Concept Plan
(Bounty Pier deleted)



PROPOSED OZP BOUNDARY FOR AREA 10b

AREA 10b
PROPOSED RESIDENTIAL DEVELOPMENT

CONCEPT PLAN
Master Layout

